1 |
Number of terms in the expansion of (x+y)<sup>6</sup> is: |
|
2 |
|
- A. T<sub>6</sub>
- B. T<sub>7</sub>
- C. T<sub>8</sub>
- D. T<sub>5</sub>
|
3 |
Number of terms in the expansion of (a+b)<sup>n</sup> is: |
- A. n
- B. n+1
- C. n-1
- D. none of these
|
4 |
In binomial expansion of (a+b)<sup>n</sup>, n is positive integer the sum of odd coefficients equals: |
- A.
- B.
- C.
- D. none of these
|
5 |
The middle term in the expansion of (1+x)<sup>1/2</sup> is: |
- A. T<sub>2</sub>
- B. T<sub>3</sub>
- C. does not exist
- D. none of these
|
6 |
If n is a positive integer, then the binomial co-efficient equidistant form the beginning and the end in the expansion of (x+a)<sup>n</sup> are: |
- A. same
- B. not same
- C. additive inverse of each other
- D. none of these
|
7 |
In binomial expansion (a+b)<sup>n</sup>, n is positive integer the sum of coefficients equals: |
- A.
- B.
- C.
- D. none of these
|
8 |
The middle terms of (x+y)<sup>23</sup> are: |
- A. T<sub>10</sub>,T<sub>11</sub>
- B. T<sub>11</sub>,T<sub>12</sub>
- C. T<sub>12</sub>,T<sub>13</sub>
- D. none of these
|
9 |
If a statement P(n) is true for n = 1 and truth of P(n) for n = k implies the truth of P(n) for n = k + 1, then P(n) is true for all: |
- A. integers n
- B. real numbers n
- C. positive real numbers n
- D. positive integers n
|
10 |
In binomial expansion of (a+b)n, n is positive integer the sum of even coefficients equals: |
- A.
- B.
- C.
- D. none of these
|