1 |
|
|
2 |
|
|
3 |
If a matrix A is symmetric as well as skew symmetric, then: |
- A. A is null matrix
- B. A is unit matrix
- C. A is triangular matrix
- D. A is diagonal matrix
|
4 |
The trivial solution of the homogeneous linear equations is: |
- A. (1, 0, 0)
- B. (0, 1, 0)
- C. (0, 0, 1)
- D. (0, 0, 0)
|
5 |
|
|
6 |
If A is a square matrix, then A - A<sup>t</sup> is: |
|
7 |
A<sup>-1</sup> exists if A is: |
- A. singular
- B. nonsingular
- C. symmetric
- D. none
|
8 |
For a square matrix A, |A| equals: |
- A. A<sup>t</sup>
- B. |A<sup>t</sup>|
- C. -|A<sup>t</sup>|
- D. -A<sup>t</sup>
|
9 |
|
- A. 25
- B. 20
- C. 40
- D. 2a + 2b + 2c
|
10 |
|
- A. 40
- B. -40
- C. 26
- D. -26
|