1 |
If A is a square matrix, then A + A<sup>t</sup> is: |
|
2 |
If A = [a<sub>ij</sub>], B = [b<sub>ij</sub>] and AB = 0 then: |
- A. A = 0
- B. B = 0
- C. either A = 0 or B = 0
- D. A & B not necessarily zero
|
3 |
If each element of a 3 × 3 matrix A is multiplied by 3, then the determinant of the resulting matrix is: |
- A. |A|<sup>3</sup>
- B. 27|A|
- C. 3|A|
- D. 9|A|
|
4 |
|
- A. singular
- B. non-singular
- C. rectangular
- D. null
|
5 |
|
- A. 3×3
- B. 3×2
- C. 2×1
- D. 2×3
|
6 |
|
- A. 3×1<!--[if gte msEquation 12]><m:oMathPara><m:oMath><m:d><m:dPr><m:begChr
m:val="["/><m:endChr m:val="]"/><span style='font-size:16.0pt;mso-ansi-font-size:
16.0pt;mso-bidi-font-size:16.0pt;font-family:"Cambria Math","serif";
mso-ascii-font-family:"Cambria Math";mso-fareast-font-family:"Times New Roman";
mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:"Cambria Math";
mso-bidi-font-family:"Calibri Light";mso-bidi-theme-font:major-latin;
color:#202124;background:white;font-style:italic;mso-bidi-font-style:normal'><m:ctrlPr></m:ctrlPr></span></m:dPr><m:e><m:m><m:mPr><m:mcs><m:mc><m:mcPr><m:count
m:val="1"/><m:mcJc m:val="center"/></m:mcPr></m:mc></m:mcs><span
style='font-size:16.0pt;mso-ansi-font-size:16.0pt;mso-bidi-font-size:
16.0pt;font-family:"Cambria Math","serif";mso-ascii-font-family:"Cambria Math";
mso-fareast-font-family:"Times New Roman";mso-fareast-theme-font:minor-fareast;
mso-hansi-font-family:"Cambria Math";mso-bidi-font-family:"Calibri Light";
mso-bidi-theme-font:major-latin;color:#202124;background:white;
font-style:italic;mso-bidi-font-style:normal'><m:ctrlPr></m:ctrlPr></span></m:mPr><m:mr><m:e></m:e></m:mr><m:mr><m:e></m:e></m:mr><m:mr><m:e></m:e></m:mr></m:m></m:e></m:d></m:oMath></m:oMathPara><![endif]--><!--[if !msEquation]--><span style="font-size:11.0pt;line-height:150%;font-family:"Calibri","sans-serif";
mso-ascii-theme-font:minor-latin;mso-fareast-font-family:SimSun;mso-hansi-theme-font:
minor-latin;mso-bidi-font-family:Arial;mso-bidi-theme-font:minor-bidi;
mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA"><v:shapetype id="_x0000_t75" coordsize="21600,21600" o:spt="75" o:preferrelative="t" path="m@4@5l@4@11@9@11@9@5xe" filled="f" stroked="f"><v:stroke joinstyle="miter"><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"><v:f eqn="sum @0 1 0"><v:f eqn="sum 0 0 @1"><v:f eqn="prod @2 1 2"><v:f eqn="prod @3 21600 pixelWidth"><v:f eqn="prod @3 21600 pixelHeight"><v:f eqn="sum @0 0 1"><v:f eqn="prod @6 1 2"><v:f eqn="prod @7 21600 pixelWidth"><v:f eqn="sum @8 21600 0"><v:f eqn="prod @7 21600 pixelHeight"><v:f eqn="sum @10 21600 0"></v:f></v:f></v:f></v:f></v:f></v:f></v:f></v:f></v:f></v:f></v:f></v:f></v:formulas><v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect"><o:lock v:ext="edit" aspectratio="t"></o:lock></v:path></v:stroke></v:shapetype><v:shape id="_x0000_i1025" type="#_x0000_t75" style="width:27.75pt;
height:61.5pt"><v:imagedata src="file:///C:\Users\Campus.pk\AppData\Local\Temp\msohtmlclip1\01\clip_image001.png" o:title="" chromakey="white"></v:imagedata></v:shape></span><!--[endif]-->
- B. 1×3
- C. 3×3
- D. 1×1
|
7 |
If A is a square matrix order 3 × 3 the |kA| equals: |
- A. k |A|
- B. k<sup>2</sup>|A|
- C. k<sup>3</sup> |A|
- D. k<sup>4</sup> |A|
|
8 |
A matrix of order m×1 is called: |
- A. row matrix
- B. column matrix
- C. identity matrix
- D. scalar matrix
|
9 |
|
- A. ab - cd = 0
- B. ac - bd = 0
- C. ad - bc = 1
- D. ad - bc = 0
|
10 |
The order of a matrix is shown by: |
- A.
- B. number of columns + number of rows
- C. number of rows × number of columns
- D. number of columns - number of rows
|