1 |
If A = [aij] and B = [bij] are two matrices of same order r × s, then order of A - B is: |
- A. r - s
- B. r × s
- C. r + s
- D. none of these
|
2 |
|
- A. singular
- B. non-singular
- C. rectangular
- D. null
|
3 |
If the matrices A & B have the orders 2×3 and 5×2 then order BA is: |
- A. 3×5
- B. 5×2
- C. 2×2
- D. none
|
4 |
|
|
5 |
[0] is a: |
|
6 |
|
- A. scalar matrix
- B. diagonalmatrix
- C. triangularmatrix
- D. none of these
|
7 |
A<sup>-1</sup> exists if A is: |
- A. singular
- B. nonsingular
- C. symmetric
- D. none
|
8 |
For a square matrix A, |A| equals: |
- A. A<sup>t</sup>
- B. |A<sup>t</sup>|
- C. -|A<sup>t</sup>|
- D. -A<sup>t</sup>
|
9 |
If A is a matrix of order m × n and B is a matrix of order n × p then the order of AB is: |
- A. p×m
- B. p×n
- C. n×p
- D. m×p
|
10 |
|
- A. ab - cd = 0
- B. ac - bd = 0
- C. ad - bc = 1
- D. ad - bc = 0
|