1 |
The method of least square gives too much weight to extremely large deviations from the |
- A. population
- B. parameter
- C. sample
- D. trend
|
2 |
Sum of squares of residuals is denoted by |
- A. ∑<i>e</i>
- B. ∑<i>e</i><sup>2</sup>
- C. ∑<i>e</i><sup>3</sup>
- D. <span style="font-size: 14.399999618530273px;">∑</span><i style="font-size: 14.399999618530273px;">e</i><sup>4</sup>
|
3 |
For a least squares linear trend Y = a + bx, the Σ(Y - Y)<sup>2</sup> = 0 when: |
- A. All the Y-values are positive
- B. All the Y-values lie on the line
- C. All the Y-values lie above the line
- D. None of these
|
4 |
In the measurement of secular trend the moving averages |
- A. give the trend in a straight line
- B. measure the seasonal variations
- C. smoothes out a time series
- D. measure irregular fluctuations
|
5 |
The additive model of the time series is: |
- A. Y = T + S + C + I
- B. TSCI
- C. Y = a + bX
- D. Y = a + bX + cX<sup>2</sup>
|
6 |
The equation of the quadratic (parabolic) trend is |
- A. ŷ=a+bx
- B. ŷ=a+by
- C. ŷ=a+bΣx+cΣx<sup>2</sup>
- D. ŷ=a+bx+cx<sup>2</sup>
|
7 |
For a least squares linear trend=ŷ = a + bx, b is the |
- A. variable
- B. intercept
- C. trend
- D. slope
|
8 |
The least squares estimates are unbiased estimates of the |
- A. statistic
- B. time series
- C. parameters
- D. variance
|
9 |
The rise and fall of a time series periods longer than one- year is called. |
- A. Secular trend
- B. Seasonal variation
- C. Cyclical variation
- D. Irregular variation
|
10 |
For a least squares line trend Y = a + bx, the b is the: |
- A. Intercept
- B. Slope
- C. Variable
- D. Trend
|