1 |
Statistical inference has two branches namely: |
- A. Level of confidence and degrees of freedom
- B. Biased estimator and unbiased estimator
- C. Point estimate and interval estimate
- D. Estimation of parameter and testing of hypothesis
|
2 |
If mean of the sampling distribution is equal to the parameter then the estimator will be |
- A. biased
- B. consistent
- C. sufficient
- D. unbiased
|
3 |
The difference of upper and lower limits of confidence interval measures the |
- A. level of significance
- B. level of confidence
- C. interval
- D. precision
|
4 |
The following statistic are unbiased estimators: |
- A. The Sample mean
- B. S<sup>2</sup> = Σ(X - X)<sup>2</sup>/n-1
- C. The sample proportion
- D. All the above
|
5 |
Large sample contains more than |
- A. 5 values
- B. 10 values
- C. 20 values
- D. 30 values
|
6 |
If 1-α = 0.90, the value of Z<sub>a/2</sub> is: |
- A. 1.645
- B. 1.96
- C. 2.326
- D. 2.575
|
7 |
If (1-α) is increased, the with of a confidence interval is: |
- A. Decreased
- B. Increased
- C. Constant
- D. Same
|
8 |
Level of significance is denoted by |
- A. 2 - α
- B. 3 - α
- C. α
- D. 1 - α
|
9 |
A range of values within which the population parameter is expected: |
- A. Confidence interval
- B. Confidence coefficient
- C. Confidence limits
- D. Level of significance
|
10 |
|
- A. best estimators
- B. biased estimators
- C. unbiased estimators
- D. normal estimators
|