1 |
If the chance of occurance of two events are same then such events are called |
- A. Independent events
- B. Dependent events
- C. Mutually exclusive events
- D. Equally likely events
|
2 |
A set representing all possible out comes of a random experiment is called |
- A. Sample space
- B. Universal set
- C. Simple event
- D. Random experiment
|
3 |
If two events cannot occur together they are said to be |
- A. Independent events
- B. Dependent events
- C. Mutually exclusive events
- D. Equally likely events
|
4 |
Arrangement of things without regard to order is called. |
- A. Raw data
- B. Arrayed data
- C. Permutation
- D. Combination
|
5 |
A set containing only one element is called |
- A. Null set
- B. Universal set
- C. Subset
- D. Singleton set
|
6 |
Two events A and B are mutually exclusive if P(A<span style="color: rgb(0, 0, 0); font-family: 'Lucida Sans Unicode', 'Lucida Grande', sans-serif; font-size: 18px; line-height: 23.390625px;">∪</span>B) = |
- A. P(A) - P(B)
- B. P(A) + P(B)
- C. P(A)P(B) - P(A<span style="color: rgb(0, 0, 0); font-family: 'Lucida Sans Unicode', 'Lucida Grande', sans-serif; font-size: 18px; line-height: 23.390625px;">∪</span>B)
- D. P(A) + P(B) - P(A<span style="color: rgb(0, 0, 0); font-family: 'Lucida Sans Unicode', 'Lucida Grande', sans-serif; font-size: 18px; line-height: 23.390625px;">∪</span>B)
|
7 |
The probability of drawing a "white" ball from a bag containing 4 red, 8 black and 3 with balls is: |
- A. 0
- B. 3/15
- C. 1/15
- D. 2/15
|
8 |
A non - orderly arrangement of thing s is called: |
- A. Permutation
- B. Equally likely
- C. Combination
- D. Equally likely
|
9 |
The number of terms in the expansion of the binomial (p+q)<sup>n</sup> is. |
|
10 |
The conditional probability P(A/B) is given by. |
- A. (A∩B)/(B)
- B. P(A∩B)/P(A)
- C. P(A∩B)/P(B)
- D. (A∩B)/P(B)
|