1 |
P (A/B) can be evaluated by formula |
- A. <span style="color: rgb(0, 0, 0); font-family: 'Lucida Sans Unicode', 'Lucida Grande', sans-serif; font-size: 18px; line-height: 23.390625px;">P(A∩B)/P(B)</span>
- B. <span style="color: rgb(0, 0, 0); font-family: 'Lucida Sans Unicode', 'Lucida Grande', sans-serif; font-size: 18px; line-height: 23.390625px;">P(A∪B). P(B)</span>
- C. <span style="color: rgb(0, 0, 0); font-family: 'Lucida Sans Unicode', 'Lucida Grande', sans-serif; font-size: 18px; line-height: 23.390625px;">(A∪B)/P(B)</span>
- D. <span style="color: rgb(0, 0, 0); font-family: 'Lucida Sans Unicode', 'Lucida Grande', sans-serif; font-size: 18px; line-height: 23.390625px;">P(A∩B)/P(A)</span>
|
2 |
If a player well shuffles the pack of 52 playing card, then the probability of a black card form 52 playing cards is: |
- A. 1/52
- B. 13/52
- C. 26/52
- D. 4/52
|
3 |
<sup>A</sup>P<sub>3</sub>is equal to.<sub></sub><sub></sub> |
|
4 |
If the chance of occurance of two events are same then such events are called |
- A. Independent events
- B. Dependent events
- C. Mutually exclusive events
- D. Equally likely events
|
5 |
An experiment which produced different outcomes even if it is repeated a large number of times, under similar conditions is called |
- A. Event
- B. Compound event
- C. Random experiment
- D. None of these
|
6 |
If E a and impossible event, then P(E) is. |
- A. 0
- B. 0.5
- C. 1
- D. Impossible
|
7 |
If an event consist of more than one sample point it is called |
- A. Simple event
- B. Compound event
- C. Exhaustive event
- D. Likely event
|
8 |
Probability of an impossible event is |
- A. Zero
- B. Negative
- C. Positive
- D. One
|
9 |
A coin is tossed 3 times then, then number of sample points in the sample space is: |
- A. 2<sup>3</sup>
- B. 3
- C. 8
- D. Both A & C
|
10 |
Subset of sample space is called |
- A. Event
- B. Simple event
- C. Compound event
- D. Experiment
|