1 |
The line joining (1,3) to (a,b) has unit gradient then |
a-b =-2
a+b = 0
A-b =5
2a + 3b =1
|
2 |
The gradient of the line joining (1,4) and (-2,5) is |
3/8
-2 2/3
-1/3
2
|
3 |
The mid point of the line joining (=1,-3) to(3,-5) is |
(1, 1)
(1,-1)
(2, -8)
(1, -4)
|
4 |
The point (-5,3) is the center of a circle and P(7,-2) lies on the circle the radius of the circle is |
2
13
7
8
|
5 |
The general solution of the differential equation dy/dx = log x is |
Y = -x log x- x +c
Y = x log x + x<sup>2</sup>
Y = x log x -x +c
Y= 2x log x + 2x +c
|
6 |
∫cot (ax + b) dx = |
1/a log |sin (ax + b)| +c
1/a log |cos ax + b)
1/b |sin (ax + b)|
1/a log |sin (bx + a)|
|
7 |
∫sec (ax + b) tan(ax + b) dx=_______ |
sec(ax + b)/a
sec<sup>2</sup> (ax + b)/2
sec(ax + b)/x
1/2
|
8 |
If f1 (x) and f2 (x) are any two anti derivatives of a function F (x) then the value of f1 (x) = f2 (x) |
A variable
A constant
Undefined
Infinity
|
9 |
d/dx ∫x1 dx =________. |
1/4 x<sup>4</sup>
X<sup>3</sup>
3x<sup>3</sup>
x<sup>4</sup>/4
|
10 |
∫1/ax +b dx = |
1/a log |ax + b| +c
Log |ax + b| +c
1/b log |ax +b| +c
1/x log |ax + b| +c
|