1 |
Every improper fraction can be reduced to sum of polynomial and a proper fraction by: |
Addition
Division
Subtraction
Multiplication
|
2 |
|
<p class="MsoNormal"><span style="font-size: 10.5pt; line-height: 107%; font-family: Arial, "sans-serif"; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">Proper fraction <o:p></o:p></span></p>
<span style="font-family: Arial, "sans-serif";"></span><span style="font-family: Arial, "sans-serif";">Improper fraction</span>
<span style="font-family: Arial, "sans-serif";">Irrational fraction</span><span style="font-family: Arial, "sans-serif";"></span>
<span style="font-family: Arial, "sans-serif";">Rational fraction</span>
|
3 |
|
<p class="MsoNormal"><span style="font-size: 10.5pt; line-height: 107%; font-family: Arial, "sans-serif"; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">Proper fraction <o:p></o:p></span></p>
<span style="font-family: Arial, "sans-serif";">Improper fraction</span>
<span style="font-family: Arial, "sans-serif";">Rational fraction</span>
<span style="font-family: Arial, "sans-serif";">Irrational fraction</span><span style="font-family: Arial, "sans-serif";"> </span>
|
4 |
|
<p class="MsoNormal"><span style="font-size: 10.5pt; line-height: 107%; font-family: Arial, "sans-serif"; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">Proper fraction <o:p></o:p></span></p>
<span style="font-family: Arial, "sans-serif";">Rational fraction</span>
<span style="font-family: Arial, "sans-serif";">Improper fraction</span>
<span style="font-family: Arial, "sans-serif";">Irrational fraction</span><span style="font-family: Arial, "sans-serif";"></span>
|
5 |
|
<p class="MsoNormal"><span style="font-size: 10.5pt; line-height: 107%; font-family: Arial, "sans-serif"; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">Proper fraction</span> </p>
Rational fraction
Improper fraction
Irrational fraction
|
6 |
|
<p class="MsoNormal"><span style="font-size: 10.5pt; line-height: 107%; font-family: Arial, "sans-serif"; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">Proper fraction</span> </p>
Rational fraction
Irrational fraction
Improper fraction
|
7 |
|
<p class="MsoNormal"><span style="font-size: 10.5pt; line-height: 107%; font-family: Arial, "sans-serif"; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">Proper fraction</span> </p>
Improper fraction
Irrational fraction
Rational fraction
|
8 |
An expression of the form (img) with real co-efficients is called: |
Proper fraction
Improper fraction
Irrational fraction
Rational fraction
|
9 |
The quotient is indicated by a: |
Comma (,)
Bracket ( )
Bar (-)
Hyphen (!)
|
10 |
The quotient of two numbers or algebraic expressions is called: |
Ratio
Fraction
Proportion
Percentage
|
11 |
If a : b = c : d, then a + b : a - b = c + d : c - d is called theorem of: |
Componendo-Dividendo
<span style="font-size: 10.5pt; line-height: 107%; font-family: Arial, "sans-serif"; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">Invertendo</span>
Dividendo
Componendo
|
12 |
If a : b = c :d, than a - b : b = c - d : d is called theorem of : |
Componendo
Dividendo
(a) & ( b)
<span style="font-size: 10.5pt; line-height: 107%; font-family: Arial, "sans-serif"; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">Invertendo</span>
|
13 |
If a : b = c :d, than a + b : b = c + d : d is called theorem of : |
Alternando
<span style="font-size: 10.5pt; line-height: 107%; font-family: Arial, "sans-serif"; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">Invertendo</span>
Dividendo
Componendo
|
14 |
If a : b = c : d, then a : c = b : d is called theorem of: |
<span style="font-size: 10.5pt; line-height: 107%; font-family: Arial, "sans-serif"; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">Invertendo</span>
Componendo
Dividendo
Alternando
|
15 |
If a : b = c : d, then b : a = d : c is called theorem of: |
Invertendo
Alternando
Dividendo
Componendo
|