1 |
|
sec x tan x
- sec<sup>2</sup>x
-sec x tan x
sec<sup>2</sup>x
|
2 |
|
-cosec x cotx
cosec<sup>2</sup> x
-cosec<sup>2</sup>x
cosec x cotx
|
3 |
|
sec x tan x
sec<sup>2</sup>x
-sec x tan x
-sec<sup>2</sup>x
|
4 |
The function f(x) = 3x2 has minimum value at : |
x = 3
x = 2
x = 1
x = 0
|
5 |
The Maclaurin series expansion is valid only if it is: |
Convergent
Divergent
Increasing
Decreasing
|
6 |
|
tan x
cot x
- tan x
- cot x
|
7 |
|
|
8 |
|
cosech x coth x
-cosech<sup>2</sup>x
-cosech x coth x
cosech<sup>2</sup>x
|
9 |
|
sech x tanh x
-sech<sup>2</sup>x
-sech x tanh x
sech<sup>2</sup>x
|
10 |
|
5 sin x
cosh (5x)
5 cosh (5x)
-5 cosh (5x)
|
11 |
|
sech x tanh x
-sech x tanhx
sech<sup>2</sup> x
-sech<sup>2</sup>x
|
12 |
|
2cosh x
2sinh x
2sinh (2x)
-2sinh (2x)
|
13 |
|
sinh x
cosh x
-sinh x
-cosh x
|
14 |
|
sinh x
cosh x
-sinh x
-cosh x
|
15 |
|
0
1
-1
2
|
16 |
|
|
17 |
|
|
18 |
|
|
19 |
|
|
20 |
|
|