1 |
-2 sin α sin ß = |
sin (α + ß) + sin (α - ß)
cos (α + ß) + cos (α - ß)
cos (α + ß) - cos (α - ß)
cos (α - ß) + cos (α - ß)
|
2 |
2 cos α sin ß = |
cos (α + ß) + cos (α - ß)
sin (α + ß) + sin (α - ß)
sin (α + ß) - sin (α - ß)
<div>cos (α + ß) + cos (α - ß)</div>
|
3 |
2 sin α cos ß = |
sin (α + ß) - sin (α - ß)
cos (α + ß) + cos (α - ß)
sin (α + ß) + sin (α - ß)
cos (α + ß) - cos (α - ß)
|
4 |
|
1 + cos Θ
1 - cos Θ
|
5 |
If sin α = cos ß in any triangle ABC then: |
α + ß = 90°
α + ß = 180°
α + ß = 360°
α + ß
|
6 |
Cot1°, Cot2°, Cot3°, .......... Cot89° = |
-1
1
∞
none
|
7 |
tan (270° + Θ) is equal: |
cot Θ
tan Θ
-cot Θ
-tan Θ
|
8 |
If an angle α is allied to an angle ß, then α ± ß = __________: |
90°
multiple of 90°
180°
multiple of 180°
|
9 |
tan (-135°) = |
0
1
√2
|
10 |
sec (2π + Θ), where Θ is a basic angle will have terminal side in: |
quad. I
quad. II
quad. III
quad. IV
|
11 |
csc (2π - Θ), where Θ is a basic angle, will have terminal side in: |
quad. I
quad. II
quad. III
quad. IV
|
12 |
|
|
13 |
|
|
14 |
|
- cot Θ
- tan Θ
tan Θ
none of these
|
15 |
|
none of these
|
16 |
|
quad. I
quad. II
quad. III
quad. IV
|
17 |
|
quad I
quad. II
quad. III
quad. IV
|
18 |
sin (Θ - π) = |
|
19 |
Tan (294°) = |
tan24°
-tan24°
cot24°
-cot24°
|
20 |
A reference angle Θ is always: |
|