1 |
|
|
2 |
|
- cot Θ
- tan Θ
tan Θ
none of these
|
3 |
|
none of these
|
4 |
|
quad. I
quad. II
quad. III
quad. IV
|
5 |
|
quad I
quad. II
quad. III
quad. IV
|
6 |
sin (Θ - π) = |
|
7 |
Tan (294°) = |
tan24°
-tan24°
cot24°
-cot24°
|
8 |
A reference angle Θ is always: |
|
9 |
The angles 90°±Θ, 180°±Θ, 270°±Θ, 360°±Θ, are the: |
composite angles
half angles
quadrantal angles
allied angles
|
10 |
|
|
11 |
tan (α+ß) = |
|
12 |
tan (α - ß ) = |
|
13 |
cos (α-ß) = |
cos α cos ß + sin α sin ß
cos α cos ß - sin α sin ß
cos α cos ß + sin α cos ß
sin α cos ß - sin α sin ß
|
14 |
sin (α - ß) = |
|
15 |
sin (α + ß) = |
|
16 |
The distance between the points P(x1, y1) and Q(x2, y2) is: |
|
17 |
If sin Θ + cosec Θ = 2, then sin2 Θ + cosec2 Θ = |
2
4
0
8
|
18 |
(1 - cos2Θ) (1 + cot2Θ) = |
tan<sup>2</sup>Θ
0
1
-1
|
19 |
(1 - sin2Θ) (1 + tan2Θ) = |
0
1
Θ
-1
|
20 |
cos4Θ - sin4Θ = |
sin 2Θ
cos 2Θ
tan 2Θ
sec 2Θ
|