1 |
|
40
-40
26
-26
|
2 |
|
1
-5
-1
none
|
3 |
Minors and co-factors of the elements in a determinant are equal in magnitude but they may differ in: |
order
position
sign
symmetry
|
4 |
If AB = BA = I, then A and B are: |
equal to each other
multiplicative inverse of each other
additive inverse of each other
both singular
|
5 |
A-1 exists if A is: |
singular
nonsingular
symmetric
none
|
6 |
|
zero
non-singular
singular
none of these
|
7 |
If A is non singular matrix then At is: |
singular
nonsingular
symmetric
none
|
8 |
|
ab - cd = 0
ac - bd = 0
ad - bc = 1
ad - bc = 0
|
9 |
|
diagonal matrix
|
10 |
If A and B are two matrices, then: |
A B = O
AB = BA
AB = I
AB may not be defined
|
11 |
If A is a square matrix, then A - At is: |
|
12 |
If A is a square matrix, then A + At is: |
|
13 |
|
3×2
2×3
2×2
3×3
|
14 |
|
3×1<!--[if gte msEquation 12]><m:oMathPara><m:oMath><m:d><m:dPr><m:begChr
m:val="["/><m:endChr m:val="]"/><span style='font-size:16.0pt;mso-ansi-font-size:
16.0pt;mso-bidi-font-size:16.0pt;font-family:"Cambria Math","serif";
mso-ascii-font-family:"Cambria Math";mso-fareast-font-family:"Times New Roman";
mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:"Cambria Math";
mso-bidi-font-family:"Calibri Light";mso-bidi-theme-font:major-latin;
color:#202124;background:white;font-style:italic;mso-bidi-font-style:normal'><m:ctrlPr></m:ctrlPr></span></m:dPr><m:e><m:m><m:mPr><m:mcs><m:mc><m:mcPr><m:count
m:val="1"/><m:mcJc m:val="center"/></m:mcPr></m:mc></m:mcs><span
style='font-size:16.0pt;mso-ansi-font-size:16.0pt;mso-bidi-font-size:
16.0pt;font-family:"Cambria Math","serif";mso-ascii-font-family:"Cambria Math";
mso-fareast-font-family:"Times New Roman";mso-fareast-theme-font:minor-fareast;
mso-hansi-font-family:"Cambria Math";mso-bidi-font-family:"Calibri Light";
mso-bidi-theme-font:major-latin;color:#202124;background:white;
font-style:italic;mso-bidi-font-style:normal'><m:ctrlPr></m:ctrlPr></span></m:mPr><m:mr><m:e></m:e></m:mr><m:mr><m:e></m:e></m:mr><m:mr><m:e></m:e></m:mr></m:m></m:e></m:d></m:oMath></m:oMathPara><![endif]--><!--[if !msEquation]--><span style="font-size:11.0pt;line-height:150%;font-family:"Calibri","sans-serif";
mso-ascii-theme-font:minor-latin;mso-fareast-font-family:SimSun;mso-hansi-theme-font:
minor-latin;mso-bidi-font-family:Arial;mso-bidi-theme-font:minor-bidi;
mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA"><v:shapetype id="_x0000_t75" coordsize="21600,21600" o:spt="75" o:preferrelative="t" path="m@4@5l@4@11@9@11@9@5xe" filled="f" stroked="f"><v:stroke joinstyle="miter"><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"><v:f eqn="sum @0 1 0"><v:f eqn="sum 0 0 @1"><v:f eqn="prod @2 1 2"><v:f eqn="prod @3 21600 pixelWidth"><v:f eqn="prod @3 21600 pixelHeight"><v:f eqn="sum @0 0 1"><v:f eqn="prod @6 1 2"><v:f eqn="prod @7 21600 pixelWidth"><v:f eqn="sum @8 21600 0"><v:f eqn="prod @7 21600 pixelHeight"><v:f eqn="sum @10 21600 0"></v:f></v:f></v:f></v:f></v:f></v:f></v:f></v:f></v:f></v:f></v:f></v:f></v:formulas><v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect"><o:lock v:ext="edit" aspectratio="t"></o:lock></v:path></v:stroke></v:shapetype><v:shape id="_x0000_i1025" type="#_x0000_t75" style="width:27.75pt;
height:61.5pt"><v:imagedata src="file:///C:\Users\Campus.pk\AppData\Local\Temp\msohtmlclip1\01\clip_image001.png" o:title="" chromakey="white"></v:imagedata></v:shape></span><!--[endif]-->
1×3
3×3
1×1
|
15 |
If A is a matrix of order m × n and B is a matrix of order n × p then the order of AB is: |
p×m
p×n
n×p
m×p
|
16 |
If the matrices A & B have the orders 2×3 and 5×2 then order BA is: |
3×5
5×2
2×2
none
|
17 |
Two matrices X and Y are equal if and only if: |
X and Y are of same order
Their corresponding elements are equal
Both a and b
None of these
|
18 |
A matrix in which each element is 0 is called: |
|
19 |
|
singular
non-singular
rectangular
null
|
20 |
|
diagonal matrix
|