1 |
The angles 90°±Θ, 180°±Θ, 270°±Θ, 360°±Θ, are the: |
composite angles
half angles
quadrantal angles
allied angles
|
2 |
|
|
3 |
tan (α+ß) = |
|
4 |
tan (α - ß ) = |
|
5 |
cos (α-ß) = |
cos α cos ß + sin α sin ß
cos α cos ß - sin α sin ß
cos α cos ß + sin α cos ß
sin α cos ß - sin α sin ß
|
6 |
sin (α - ß) = |
|
7 |
sin (α + ß) = |
|
8 |
The distance between the points P(x1, y1) and Q(x2, y2) is: |
|
9 |
If sin Θ + cosec Θ = 2, then sin2 Θ + cosec2 Θ = |
2
4
0
8
|
10 |
(1 - cos2Θ) (1 + cot2Θ) = |
tan<sup>2</sup>Θ
0
1
-1
|
11 |
(1 - sin2Θ) (1 + tan2Θ) = |
0
1
Θ
-1
|
12 |
cos4Θ - sin4Θ = |
sin 2Θ
cos 2Θ
tan 2Θ
sec 2Θ
|
13 |
If the initial side of an angle is the positive x-axis and the vertex is at the origin, the angle is said to be in the _____________: |
initial position
finalposition
normalposition
standardposition
|
14 |
Which one is not a quadrant angle ? |
0°
90°
280°
270°
|
15 |
Which one is a quadrant angle ? |
60°
180°
120°
30°
|
16 |
In a triangle if α > 45°, ß > 30° then Γ cannot be: |
90°
100°
120°
10°
|
17 |
If sinΘ <0, cosΘ<0 then the terminal arm of the angle lies in quadrant: |
I
II
III
IV
|
18 |
If sin α < 0 and cos α > 0, then α lies in: |
I
II
III
IV
|
19 |
If cosec Θ > 0 and cot Θ < 0, then terminal arm of the angle lies in: |
I
II
III
IV
|
20 |
If tan Θ > 0 and sin Θ < 0 then terminal arm of the angle lies in quadrant: |
I
II
III
IV
|