1 |
If a : b = c : d, then a + b : a - b = c + d : c - d is called theorem of: |
Componendo-Dividendo
<span style="font-size: 10.5pt; line-height: 107%; font-family: Arial, "sans-serif"; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">Invertendo</span>
Dividendo
Componendo
|
2 |
If a : b = c :d, than a - b : b = c - d : d is called theorem of : |
Componendo
Dividendo
(a) & ( b)
<span style="font-size: 10.5pt; line-height: 107%; font-family: Arial, "sans-serif"; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">Invertendo</span>
|
3 |
If a : b = c :d, than a + b : b = c + d : d is called theorem of : |
Alternando
<span style="font-size: 10.5pt; line-height: 107%; font-family: Arial, "sans-serif"; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">Invertendo</span>
Dividendo
Componendo
|
4 |
If a : b = c : d, then a : c = b : d is called theorem of: |
<span style="font-size: 10.5pt; line-height: 107%; font-family: Arial, "sans-serif"; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;">Invertendo</span>
Componendo
Dividendo
Alternando
|
5 |
If a : b = c : d, then b : a = d : c is called theorem of: |
Invertendo
Alternando
Dividendo
Componendo
|
6 |
If 12, p and 3 are in continued proportion, then p = |
|
7 |
In a : b : : c : d, d is called: |
Thirdproportional
Fourthproportional
Meanproportional
Continuedproportional
|
8 |
In a : b : : b : c, b is called: |
Meanproportional
Thirdproportional
Continuedproportional
Fourthproportional
|
9 |
In a : b : : b : c, where c is called: |
Fourth proportional
Meanproportional
Thirdproportional
Continuedproportional
|
10 |
If y = 8 and x = 4, then k = xy, we get k = |
12
32
84
114
|
11 |
If one quantity increases and other decreases, the variation is: |
Inverse
Direct
Indirect
Equal
|
12 |
If y = kx, x = 7 and y = 6, then k = |
42
13
|
13 |
K is known as: |
Sign of proportionality
Extremes
Constant of proportionality
Means
|
14 |
If Y is directly proportional to x it can be written as: |
x = y
y : x
|
15 |
Variation has |
Two types
Three types
Four types
Five type
|