1 |
A 10 F capacitor is charged to a potential difference of 50 V and is connected to another uncharged capacitor in parallel. Now the common potential difference becomes 20 volt.The capacitance of second capacitor is |
10<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 224);">μ</span>F
20<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 224);">μ</span>F
30<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 224);">μ</span>F
15<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 224);">μ</span>F
|
2 |
A certain charge liberates 0.8 g of oxygen. The same charge will liberate. how many g of silver? |
108 g
10.8 g
0.8 g
108/0.8 g
|
3 |
In a voltmeter the conduction takes place due to |
Electrons only
Holes only
Electrons and holes
Electrons and ions
|
4 |
A conducting wire is drawn to double its length. Final resistivity of the material will be |
Double of the original one
Half of the original one
One fourth of the original one
Same as original one
|
5 |
A piece of fuse wire melts when a current of 15 ampere flows through it. With this current. If it dissipates 22.5 W, the resistance of fuse wire will be |
Zero
10<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><b>Ω</b></span>
1<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><b>Ω</b></span>
0.10<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><b>Ω</b></span>
|
6 |
If 2.2 kilowatt power is transmitted through a 10 ohm line at 22000 volt, the power loss in the form of heat will be |
0.1 watt
1 watt
10 watt
100 watt
|
7 |
The conductivity of a superconductor is |
Infinite
Very large
Very small
Zero
|
8 |
If 2.2 kilowatt power is transmitted through 1 10 ohm line at 22000 volt, the power loss in the form of heat will be |
0.1 watt
1 watt
10 watt
100 watt
|
9 |
A 50 volt battery is connected across 10 ohm resistor. The current is 4.5 A. The internal resistance of the battery is |
Zero
0.5<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><b>Ω</b></span>
1.1<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><b>Ω</b></span>
5.0<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><b>Ω</b></span>
|
10 |
A (100 W , 200 W) bulb is connected to a 160 V power supply. The power consumption would be |
64 W
80 W
100 W
125 W
|
11 |
A wire of radius r has resistance R. If it is stretched to a wire of r/2 radius, then the resistance becomes |
2R
4R
16R
Zero
|
12 |
Two electric bulbs of 200 W and 100 W have same voltage. If R1and R2be their resistance respectively then |
R<sub>1</sub>= 2R<sub>2</sub>
R<sub>2</sub>= 2R<sub>1</sub>
R<sub>2 </sub>=<sub> </sub>4R<sub>1</sub>
R<sub>1</sub>= 4R<sub>2</sub>
|
13 |
A ten ohm electric heater operates on a 110 V line. Calculate the rate at which it develops heat in watts |
1310 W
670 W
810 W
1210 W
|
14 |
|
5<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><b>μF</b></span>
10<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><b>μF</b></span>
3<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><b>μF</b></span>
6<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><b>μF</b></span>
|
15 |
Taking the earth to be a spherical conductor of diameter 12.8 x 103km. Its capacity will be |
711<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><b>μ</b></span>F
611<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><b>μ</b></span>F
811<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><b>μ</b></span>F
511<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><b>μ</b></span>F
|
16 |
The nature of capacity of electrostatic capacitor depends on |
Shape
Size
Thickness of plates
Area
|
17 |
A sheet of aluminium foil of negligible thickness is introduced between the plates of a capacitor. The capacitance of the capacitor |
Increases
Decreases
Remain unchanged
Becomes infinite
|
18 |
The energy required to charge a capacitor of 5μF by connecting D.C. source of 20 KV is |
10 KJ
5 KJ
2 KJ
1 KJ
|
19 |
When a dielectric material is introduced between the plates of a charged condenser the electric field between the plates |
Decreases
Increases
No change
May increase or decresase
|
20 |
A capacitor of capacity 1μF is charged to 1 KV. The energy stored in J |
5
0.5
0.005
50
|
21 |
If the distance between the plates of a parallel plate condenser of capacity 10μF is doubled then new capacity will be |
5<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><b>μ</b></span>F
20<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><b>μ</b></span>F
10<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><b>μ</b></span>F
15<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><b>μ</b></span>F
|
22 |
The capacity of a parallel plat capacitor depends on the |
Type to metal used
Thickness of plates
Potential applied across the plates
Separation between the plates
|
23 |
In a charged capacitor the energy is stored in |
Both in positive and negative charges
Positive charges
The edges of the capacitor plates
The electric field between the plates
|
24 |
A condenser of capacity 50μF is charged to 10 V.The energy stored is |
1.25 x 10<sup>-3</sup>J
3.75 x 10<sup>-3</sup>J
2.5 x 10<sup>-3</sup>J
5 x 10<sup>-3</sup>J
|
25 |
A metal plate of thickness half the separation between the capacitor plates of capacitance C is inserted. The new capacitance is |
C
C/2
Zero
2C
|
26 |
A one microfarad capacitor of a TV is subjected to 4000 V potential difference. The energy stored in capacitor is |
8 J
16 J
4 x 10<sup>-3</sup>J
2 x 10<sup>-3</sup>J
|
27 |
A medium of dielectric constant 'K' is introduced between the plates of parallel plate condenser. As a result its capcitance |
Increase k time
Decreases k times
Decreases 1/K times
Remains unchanged
|
28 |
Force acting upon a charged particle kept between the plates of a charged condenser if F. IF one of the plates of the condenser is removed, force acting on the same will become |
Zero
F/2
F
2F
|
29 |
A parallel plate capacitor is first charged and then a dielectric slab is introduced between the plates. The quantity that remains unchanged is |
Charge Q
Potential V
Capacity
Energy U
|
30 |
If we increase the distance between two plates of the capacitor, the capacitance will |
Increase
Decrease
Remain same
First increase then decrease
|