1 |
The square matrix A is skew-symmetric when At= |
-B
-C
-A
-D
|
2 |
A square matrix A = [aij] is upper triangular when |
cij = 0
bij = 0
aij = 0 for all i > j
dij = 0
|
3 |
A square matrix A = [aij] is lower triangular matrix when: |
aij = 0 for all i < j
bij = 0
cij = 0
dij =0
|
4 |
|
Singular
Non-singular
Adjoint
None of above
|
5 |
Matrices A = [aij] 2 x 3 and B =[bij] 3 x 2 are suitable for |
BA
A<sup>2</sup>
AB
B<sup>2</sup>
|
6 |
|
|
7 |
|
a = -1/2, b = -1
a = 1, b = 2
a = 2, b = 3
None of above
|
8 |
|
x =0, y =4
x = -1, y = 2
x = 2, y = 3
x = 3, y = 4
|
9 |
|
|
10 |
A and B be two square matrices and if their inverse exist, the (AB)-1= |
A<sup>-1</sup>B<sup>-1</sup>
AB<sup>-1</sup>
A<sup>-1</sup>B
B<sup>-1</sup>A<sup>-1</sup>
|
11 |
|
I
14 I
0
None of these
|
12 |
If A and B are two matrices such that AB = B and BA =A, then A2+ B2= |
2 AB
2 BA
A + B
AB
|
13 |
|
|
14 |
|
3, -3, 11
3, 3, 11
-3, 3, -11
-3, -3, 11
|
15 |
|
|
16 |
|
a<sup>2</sup>b<sup>2</sup>c<sup>2</sup>
4a<sup>2</sup>b<sup>2</sup>c<sup>2</sup>
4abc
None
|
17 |
|
|
18 |
|
1
-1
0
I
|
19 |
Let A be a square matrix. Then, 1/2 (A-A') is |
Skew-symmetric
Symmetric
Null
None of the above
|
20 |
If A is a skew-symmetric matrix of order n and P, any square matrix of order n, prove that P' AP is |
Skew-symmetric
Symmetric
Null
Diagonal
|
21 |
(ABC)' = |
CBA'
CBA
C' B' A'
None of these
|
22 |
|
1
0
-1
2
|
23 |
|
1
0
3
-1
|
24 |
|
-3
-7
1
0
|
25 |
|
A<sup>2</sup>- 5A + 7I = 1
2A<sup>2</sup>- 3A + 7I = 0
A<sup>2</sup>- 5A + I = 0
A<sup>2</sup>- 5A + 7I = 0
|
26 |
|
|
27 |
|
|
28 |
|
a = 2, b = 3
a = 3, b = 2
a = 2, b = 1, 2
a = 3, b = 3
|
29 |
Which of the following is an identity matrix? |
none of these
|
30 |
|
0
1
-A
-1
|