Sr. # | Questions | Answers Choice |
---|---|---|
1 | When two spherical
conducting balls at different potentials are joined by a metallic wire, after
some time: |
<p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Both the conductors are at the same potential<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Potential difference across the conductors remain constant<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Potential difference across the conductors becomes zero<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Both (A) and (B)<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size: 12pt; line-height: 107%; font-family: "Times New Roman", serif;">Both (A) and (C)<b><o:p></o:p></b></span></p> |
2 | In order to have a
constant current through wire, the potential difference across its end should: |
<p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Be zero<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size: 12pt; line-height: 107%; font-family: "Times New Roman", serif;">Be maintained constant<b><o:p></o:p></b></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Goes on increasing<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Go on decreasing<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Both (A) and (B)<o:p></o:p></span></p> |
3 | An electric field is generated along the wire when: | <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Its resistance is very high<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">A constant potential is maintained across the wire<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Net current through the wire is zero<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size: 12pt; line-height: 107%; font-family: "Times New Roman", serif;">A constant potential difference is maintained across the wire<b><o:p></o:p></b></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Either (A) or (D)<o:p></o:p></span></p> |
4 | The effects of bends in
a wire on its electrical resistance are: |
<p class="MsoNormal" style="text-align:justify"><span style="font-size: 12pt; line-height: 107%; font-family: "Times New Roman", serif;">Zero<b><o:p></o:p></b></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Much larger<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Larger<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Smaller<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">None of these<o:p></o:p></span></p> |
5 | When resistance of a current carrying wire increases due to rise in temperature, the drift velocity of electrons: | <p class="MsoNormal" style="text-align:justify"><span style="font-size: 12pt; line-height: 107%; font-family: "Times New Roman", serif;">Decreases<b><o:p></o:p></b></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Increases<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Remains the constant<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Either of these<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">None of these<o:p></o:p></span></p> |
6 | When a constant potential difference is applied across the conductor, the drift velocity of electrons: | <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Increases<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Decreases<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size: 12pt; line-height: 107%; font-family: "Times New Roman", serif;">Remains the constant<b><o:p></o:p></b></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Either of these<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">None of these<o:p></o:p></span></p> |
7 | When a constant potential difference is applied across the conductor, the drift velocity of electrons: | <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Increases<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Decreases<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size: 12pt; line-height: 107%; font-family: "Times New Roman", serif;">Remains the constant<b><o:p></o:p></b></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Either of these<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">None of these<o:p></o:p></span></p> |
8 | The term drift velocity is used when the ends of a wire are: | <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Connected to a laser source<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Connected to a voltage source<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Not connected to a voltage source<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">At different values of potential<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size: 12pt; line-height: 107%; font-family: "Times New Roman", serif;">Both (B) and (D)<b><o:p></o:p></b></span></p> |
9 | If the ends of a wire are connected to a battery an electric field E will be set up at: | <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">The ends of the wire only<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Mid points of the wire only<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Every point within the wire<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size: 12pt; line-height: 107%; font-family: "Times New Roman", serif;">At nodes only<b><o:p></o:p></b></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Both (B) and (D)<o:p></o:p></span></p> |
10 | The rate at which the
free electrons pass through any section of a metallic wire from right to left
is: |
<p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Greater than the speed at which they pass from left to right<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Less than the speed at which they pass from left to right<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size: 12pt; line-height: 107%; font-family: "Times New Roman", serif;">The same speed at which they pass from left to right<b><o:p></o:p></b></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Any of above<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">None of them<o:p></o:p></span></p> |
11 | The rate at which the
free electrons pass through any section of a metallic wire from right to left
is: |
<p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Greater than the speed at which they pass from left to right<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Less than the speed at which they pass from left to right<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size: 12pt; line-height: 107%; font-family: "Times New Roman", serif;">The same speed at which they pass from left to right<b><o:p></o:p></b></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Any of above<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">None of them<o:p></o:p></span></p> |
12 | The free electrons in metals: | <p class="MsoNormal" style="text-align:justify"><span style="font-size: 12pt; line-height: 107%; font-family: "Times New Roman", serif;">Are in random motion and their speed depends upon temperature<b><o:p></o:p></b></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Move in particular direction<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Move with speed of light<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Move such that their speed does not depend on their temperature<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">None of these<o:p></o:p></span></p> |
13 | In a metal, the valence electrons are: | <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Attach to individual atoms<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Not attached to individual atoms<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Free to move within the metal<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Both (A) and (C)<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size: 12pt; line-height: 107%; font-family: "Times New Roman", serif;">Both (B) and (C)<b><o:p></o:p></b></span></p> |
14 | The positive charge moving in one direction is equivalent in all external affects to a: | <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Negative charge is moving in the same direction<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size: 12pt; line-height: 107%; font-family: "Times New Roman", serif;">Positive charge is moving in the opposite direction</span><span style="font-size: 12.0pt;line-height:107%;font-family:"Times New Roman","serif""><o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Negative charge moving in the opposite direction<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">Positive charges moving in the same direction<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">None of these<o:p></o:p></span></p> |
15 | The current of 1 ampere
is passing through a conductor. The charge passing through it in half a minute
is: |
<p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">One coulomb<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">0.5 coulomb<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">30 coulomb<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">2 coulombs<o:p></o:p></span></p> <p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt; line-height:107%;font-family:"Times New Roman","serif"">None of these<o:p></o:p></span></p> |