1 |
The equation of the plane which bisects the line joining (2, 3, 4) and (6, 7, 8) is |
x + y + z - 15 = 0
x - y + z - 15 = 0
x - y - z - 15 = 0
x + y + z + 15 = 0
|
2 |
The distance of the plane 2x - 3y + 6z + 14 = 0 from the origin is |
14
2
-2
11
|
3 |
The point which divides the line joining the points (2, 4, 5) and (3, 5, -4) in the ratio -2 : 3 lines on |
ZOX plane
XOY plane
YOZ plane
None of these
|
4 |
|
0
2
4/3
5/3
|
5 |
The projections of a line segment on x, y, z axes are 12, 4, 3. The length and the direction cosines of the line segment are |
|
6 |
The st. lines whose direction cosines satisfy al + bm + cn = 0, fmn + gnl + hlm=0 are perpendicular if |
|
7 |
|
(3, 1, -2)
(3, -2, 1)
(2, -1, 3)
(-1, -2, -3)
|
8 |
The distance of the points (3, 4, 5) from y-axis is |
|
9 |
The direction cosines of any normal to the xy-plane are |
<1, 0, 0>
<0, 1, 0>
<1, 1, 0>
<0, 0, 1>
|
10 |
The direction cosines of a line equally inclined with co-ordinate axes are |
|
11 |
The points (5, 2, 4)(6, -1, 2) and (8, -7, k) are collinear if k is equal to |
-2
2
3
-1
|
12 |
If l, m, n are the d.c.'s of a line, then |
l2+ m2+ n2= 0
l2+ m2+ n2= 1
l + m + n = 1
l = m = n = 1
|
13 |
Which of the following integrals can be evaluated |
|
14 |
|
|
15 |
|
<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 224);"><i>π</i></span>
<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 224);"><i>π/6</i></span>
-<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 224);"><i>π/2</i></span>
2<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 224);"><i>π</i></span>
|
16 |
|
0
1
2
4
|
17 |
|
Always negative
Zero
Always positive
Infinity
|
18 |
If the graph of f is entirely below the x-axis, then the value of definite integral is |
= 0
< 0
> 0
None
|
19 |
If the lower limit of an integral is a constant and the upper limit is a variable, then the integral is a |
Constant function
Variable value
Function of upper limit
All
|
20 |
The arbitrary constants involving in the solution can be determined by the given conditions. Such conditions are called |
Boundaries
Variable separable
Initial values
None
|
21 |
|
Y = -x log x -x + c
Y = x log x + x
Y = x log x - x + c
None of these
|
22 |
|
|
23 |
|
|
24 |
|
X = 100 sin<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><i>θ</i></span>
X = 10 sin<span style="font-family: "Times New Roman"; font-size: 24px; color: rgb(34, 34, 34); text-align: center; background-color: rgb(255, 255, 248);"><i>θ</i></span>
X = 100 sec<span style="font-family: "Times New Roman"; font-size: 24px; color: rgb(34, 34, 34); text-align: center; background-color: rgb(255, 255, 248);"><i>θ</i></span>
None of these
|
25 |
|
A variable
A constant
0
None of these
|
26 |
|
|
27 |
|
|
28 |
Which of the following integrals can be evaluated |
|
29 |
|
|
30 |
|
|