1 |
The standard parabolic form of the equation f(x) = x2 +4 x +1 is |
x(x+4)+1
(x+2)<sup>2</sup>-3
(x+4)<sup>3</sup> + 9
x(x-2)<sup>2</sup>+1
|
2 |
If f(x) = ax2, and a>0, then the lowest point on the parabola is called. |
Vertex of parabola
Co-ordinates of parabola
Roots of the equation
Coefficient of the equation
|
3 |
If a parabola opens down, then its vertex is at the |
Right of the parabola
Left of parabola
Lowest point on the parabola
Highest point on the parabola
|
4 |
The root of the quadratic equation are |
3
2
1
4
|
5 |
In quadratic equation, if the replacement of y with -y leaves the equation unchanged, then the graph is |
Straight line
Circle
Hyperbola
Symmetric w.r.t.0
|
6 |
In quadratic equation y=ax3 +bx+c, if b and c are both zero then the graph is |
Symmetric w.r.t.y-axis
Symmetric w.r.t.x-axis
Straight Line
Circle
|
7 |
In quadratic equation f(x) = ax2,if a >0, then the graph of parabola |
Opens up
Opens down
close up
symmetric w.r.t.x.axis
|
8 |
The graph of the quadratic equation is |
Straight line
Circle
Parabola
elipse
|
9 |
The solution of the quadratic equation x2 -7x + 10=0, is |
2
5
2,5
7
|
10 |
the largest degree of the terms in the polynomials is called |
terms of the polynomial
degree of a polynomial
co-efficient
monomial
|
11 |
The roots of the equation x2 +6x-7=0,are |
1
2
1 and -7
-7
|
12 |
A quadratic equation has two |
roots
degree
variables
constants
|
13 |
Another name of quadratic equation is |
Polynomial
2nd degree polynomial
Linear equation
simaltaneous equations
|
14 |
A quadratic equation in x is an equation that can be witten in the form |
ax<sup>2 </sup>+ b = 0
ax<sup>3</sup> +b<sup>2</sup>+c=0
ax<sup>2</sup> +bx+c=0
ax<sup>3</sup> +bx<sup>3</sup>+cx=0
|
15 |
Every subset of a finite set is |
Disjoint
Null
Finite
Infinite
|
16 |
0 is a symbol of |
singleton set
Empty set
Equivalent set
Infinite set
|
17 |
The number of subsets of B = {1,2,3,4,5} |
10
32
16
5
|
18 |
The number of proper subset of A ={a.b.c.d} is |
3
6
8
15
|
19 |
The many subset can be formed from the set {a,b,c,d} |
8
4
12
16
|
20 |
The number of subset of {0} is |
1
2
3
None
|
21 |
If E = { } , then P(E) |
∅
{ }
{(2),(4),(6)....}
(∅)
|
22 |
If D = {a} , the P(D) = |
{a}
<p class="MsoNormal"><!--[if gte msEquation 12]><m:oMathPara><m:oMath><i
style='mso-bidi-font-style:normal'><span style='font-family:"Cambria Math",serif;
mso-bidi-font-family:Calibri;mso-bidi-theme-font:minor-latin'><m:r>∅</m:r></span></i></m:oMath></m:oMathPara><![endif]--><!--[if !msEquation]--><span style="line-height: 107%;"><!--[if gte vml 1]><v:shapetype id="_x0000_t75"
coordsize="21600,21600" o:spt="75" o:preferrelative="t" path="m@4@5l@4@11@9@11@9@5xe"
filled="f" stroked="f">
<v:stroke joinstyle="miter"/>
<v:formulas>
<v:f eqn="if lineDrawn pixelLineWidth 0"/>
<v:f eqn="sum @0 1 0"/>
<v:f eqn="sum 0 0 @1"/>
<v:f eqn="prod @2 1 2"/>
<v:f eqn="prod @3 21600 pixelWidth"/>
<v:f eqn="prod @3 21600 pixelHeight"/>
<v:f eqn="sum @0 0 1"/>
<v:f eqn="prod @6 1 2"/>
<v:f eqn="prod @7 21600 pixelWidth"/>
<v:f eqn="sum @8 21600 0"/>
<v:f eqn="prod @7 21600 pixelHeight"/>
<v:f eqn="sum @10 21600 0"/>
</v:formulas>
<v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect"/>
<o:lock v:ext="edit" aspectratio="t"/>
</v:shapetype><v:shape id="_x0000_i1025" type="#_x0000_t75" style='width:6.75pt;
height:14.25pt'>
<v:imagedata src="file:///C:/Users/Softsol/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png"
o:title="" chromakey="white"/>
</v:shape><![endif]--><!--[if !vml]--><img width="9" height="19" src="file:///C:/Users/Softsol/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png" v:shapes="_x0000_i1025" style="font-family: Calibri, sans-serif; font-size: 11pt;">∅<!--[endif]--></span><!--[endif]--><o:p></o:p></p>
{∅,{a}}
{∅,a}
|
23 |
The set of even prime numbers is |
(2,4,6,8,10}
{2,4,6,8,10,12}
{1,3,5,7,9}
{2}
|
24 |
If A⊆ B, and B is a finite set, then |
n (a) < n(B)
n(B)<(A)
n(A)≤ n (B)
n(A)≥ n(B)
|
25 |
If A = {2m/m3= 8 , m€ Z} then A =
|
{1,8,27}
{4}
(2,4,6}
{2,16,54}
|
26 |
If 0 = {1,3,5.......}, then n (0) = |
Infinite
Even numbers
odd integers
99
|
27 |
If B ={x/x€ Z ^ - 3 < x < 6}, then n (B) = |
5
{-3,-2,-1,0,1,2,3,4,5,6}
8
9
|
28 |
If a = {2m/2m < 9 ,m€ p} , the (n A) = |
{2,3,4,5,6,7,8}
{2,4,6,8............16}
{ 4, 6}
{2,3,5,7}
|
29 |
If C={p/p < 18, p is a prime number}, then C = |
{2,3,4,.........17}
{2,4,6,8................16}
{1,3,5,7,9,11,13,15,17}
{3,6,9,12,15}
|
30 |
If A = {x/x is a positive integer and 4≤x<23}, then A= |
{1,2,3,4,5,6,7}
{4,5,6...........22}
{1,2,3,.........23}
{1,2,3,4,5}
|