1 |
The period of tan x/7 is |
3π
7π
15π
5π
|
2 |
For all positive integral value of n,3n< n! , when |
n> 6
n< 6
n<11
n>11
|
3 |
The fifteenth term of (3-a)15 is |
-17a<sup>12</sup>
-945a<sup>13</sup>
-941a<sup>13</sup>
-515a<sup>12</sup>
|
4 |
The coefficient of x18 in (ax4-bx)9 after expansion is |
84a<sup>3</sup> b<sup>6</sup>
22a<sup>3</sup>b<sup>6</sup>
27a<sup>4</sup>b<sup>5</sup>
28a<sup>3</sup>b<sup>6</sup>
|
5 |
The fifth term of (a+2x3)17 is |
4013 x3a13
2208a13 x12
223x7a18
38080a13 x12
|
6 |
The 5th term of (3a-2b) -1 is |
77b<sup>2</sup>/a<sup>5</sup>
16b<sup>2 </sup>/243 a<sup>5</sup>
17b<sup>4</sup>/43a<sup>5</sup>
25b<sup>3</sup>/43a<sup>5</sup>
|
7 |
The term independent of x is the expansion (x3+1/x)12 |
295
495
395
722
|
8 |
The seventh term of (x3+1/x)8is |
71
-22
27
28
|
9 |
The 7th term of (38 + 64x)11/4 is |
-19217/3 x<sup>6</sup>
189/2 6<sup>4</sup>x
2227/12 x<sup>3</sup>
-19712/3 x<sup>6</sup>
|
10 |
The 8th term of (1+2x) -1/2is |
-221/16 x<sup>7</sup>
-225/18 x<sup>7</sup>
-407/9 x<sup>3</sup>
-429/16 x<sup>7</sup>
|
11 |
The term involving x4 the expansion (3-2x)7 is |
217 x4
15120x4
313x4
-25x4
|
12 |
The coefficient of the third term of (8a-b)1/3, after simplification is |
-228
1/288
1/220
-1/177
|
13 |
The coefficient of x10in the expansion (x3+3/x2)10is |
1700
17023
17027
17010
|
14 |
The coefficient of x10in the expansion (x3+3/x2)10is |
1700
17023
17027
17010
|
15 |
(x3-1/x)12 |
295
495
395
722
|
16 |
The term involving x4 in the expansion (3-2x) is |
217x<sup>4</sup>
15120x<sup>4</sup>
313x<sup>4</sup>
-25x<sup>4</sup>
|
17 |
The middle term of (x-y)8is |
25 x<sup>4</sup>y<sup>4</sup>
70 x<sup>4</sup>y<sup>4</sup>
120 x<sup>4</sup>y<sup>4</sup>
97x<sup>4</sup>y<sup>4</sup>
|
18 |
The coefficient of the second term of (a+b)4 is |
1
9
3
5
|
19 |
(x3-1/2x)6 is |
15/16 x<sup>2</sup>
2/13 x<sup>2</sup>
17/7 x<sup>2</sup>
16/15 x<sup>2</sup>
|
20 |
The middle term of [1/x-x]10 is |
-152
-252
371
-421
|
21 |
n2 - 1 divisible by 8 when n is |
an odd integer
an even integer
Irrational
Prime Number
|
22 |
n! > 2n-1 is true when |
n≤ 3
n≤ 6
n≥ 4
n≤ 6
|
23 |
for n€ N, 32n + 7 is divisible by |
7
8
9
10
|
24 |
If nis positive integers, then 2n>2n+1, only when |
n≤ 3
n≥ 3
n≤ 2
n≤ 1
|
25 |
For≥ -2 , 1+3+5+......+(2n+5) |
(n+2)<sup>2</sup>
(n-2)<sup>2</sup>
2n+1
(n+3)<sup>2</sup>
|
26 |
For n€ N,2n>2 > n is to only when |
n<2
n≤ 4
n≥ 4
|
27 |
If n € N , then n(n+3) is always |
Multiple of 3
Multiple of 6
odd
even
|
28 |
For each even natural number n (n2-1) is divisible by |
6
3
4
8
|
29 |
If n is any positive integer ,t hen 2+4+6+......+2 n= |
2<sup>n</sup>-1
2<sup>n</sup>+1
n<sup>2</sup>+1
n(n+1)
|
30 |
The sum of the cubes of three consecutive natural number is divisible by |
9
6
5
10
|