Mathematics ECAT Pre Engineering Online Test With Answers

image
image
image

Mathematics ECAT Pre Engineering Online Test

Sr. # Questions Answers Choice
1 cos-1(cos x) = x cos x x = 1/x cos<sup>-2</sup> x
2 Cos-1(x)= cos x x tan-1(-x) Sec-1 (1/x)
3 Cos-1 (-x) = -x 1/x tan-1 x π-cos-1 x
4 Ifπ≤x≤2π, then cos-1 (cos x)= cos x -x 1/x -x
5 If cos (2 sin-1 x) = 1/9 , then what is the value of x? 1/3 -2/3 2/3 2/3 , -2/3
6 Cos (cos4π/3)= π/2 π/3 2π/3 -π/3
7 The exact degree value of the function sin-1( -√3/2) is 70<sup>ο</sup> 50<sup>ο</sup> 90<sup>ο</sup> 60<sup>ο</sup>
8 What is the value of cos (cos-1 2) ? √2 1/2 undefine 0
9 The value of cos(cos-1 1/2) is 1/2 √3/2 -1/2 1/√2
10 What is the value of cos-1(1/2)? π/3 π/4 3π/2 π/6
11 sin-1 x = tan<sup>-1</sup> x Cosec<sup> -1</sup> x Cosec x cosec<sup>-1</sup>(1/x)
12 Sin-1(-x)= x -x -sin-1 x cos-1 x
13 sin -1(sin2π/3) = π/2 2π/3 -3π/2 π/3
14 sn (2sin-10.8) 0.56 0.69 -0.16 0.96
15 Sin -1 x= sin(π/2-x) Sin-1 (π/2-x) π/2-cos-1x π/2 + cos-1x
16 sin (sin-1(1/2))= 0 2 1/2
17 The principal value of sin-1[-√(√3) /2] is 5π/3 -2π/3 -<img width="9" height="19" src="file:///C:/Users/Softsol/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png" v:shapes="_x0000_i1025">π/3<p class="MsoNormal"><!--[endif]--><o:p></o:p></p> π/3
18 The value of sin-1 24/25 is equal to csc-1 25/24 sec-1 24/25 2 tan-1 4/5 2cos-1 24/25
19 The value of sin-1 5/13 is equal to Cos 5/13 Tan<sup>-1</sup> 5/12 cos<sup>-1</sup>5/12 2 cos<sup>-1 </sup>4/5
20 The Principal value of sin-1 (-1/1/2) <p class="MsoNormal">π/2<o:p></o:p></p> <p class="MsoNormal">-π/2<o:p></o:p></p> <p class="MsoNormal">π<o:p></o:p></p> <p class="MsoNormal">-π<o:p></o:p></p>
21 In the interval 0≤ x ≤ π, the sine is

Not a function Not defined Infinity Not one-to-one function
22 x = sin-1 3, then the value of sin x is √(3/2) 3 Not possible -1
23 The domain of the function y = sin x , is -π/2≤ x≤ π/2 π/ ≤ x≤ π -2π ≤ x≤ 2π -1 ≤ x≤ 1
24 The principal value of sin-1 (-1/2) π/3 π/4 π/6 -π/6
25 The principal value of sin-1√(3/2) is -π/3 π/3 2π/3 π/2
26 The law of sines can be used to solve oblique triangle when following information is given: Two angles and a side Two sides and an angle opposite one of the given sides Two sides and the angle between two sided Option a and b
27 The law of sines can be used to solve Right angle triangle Isosceles triangle oblique triangle haxagon
28 If sided of𝜟ABC are 16,20,and 33, then the value of the greatests angle to 150𝜊 20' 132𝜊 35' 101𝜊 25' 160𝜊 50'
29 IfΔABC is right, law of cosine reduce to Law of sine Law of tangent Phthogorous theorem Hero's formula
30 In triangle ABC, in which b=95, c=34, a =52𝜊then the value of a= 18 cm 18.027 cm 20.7 cm 19 cm
Download This Set