1 |
|
9/4
4/9
1
None of these
|
2 |
|
2s<sup>2</sup>
2s<sup>3</sup>
s<sup>3</sup>
3s<sup>3</sup>
|
3 |
|
K/6
2K
3K
6K
|
4 |
Let A is a 3 x 3 matrix and B is its adjoint matrix. If |B| = 64, then |A| = |
|
5 |
|
0
Independent of a
Independent of b
Independent of c
|
6 |
|
0
abc
1/abc
None of these
|
7 |
|
|
8 |
|
Orthogonal
Involutary
Idempotent
Nilpotent
|
9 |
|
a = 4, b = 1
a = 1, b = -4
a = 0, b = 4
a = 2, b = 4
|
10 |
|
|
11 |
|
Symmetric
Skew-symmetric
Hermitian
Skew hermitian
|
12 |
|
4A - 3I
3A - 4I
A - I
None of these
|
13 |
|
A(<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 224);"><i>α</i></span>) - A(<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><i>β</i></span>)
A(<span style="font-family: "Times New Roman"; font-size: 24px; color: rgb(34, 34, 34); text-align: center; background-color: rgb(255, 255, 224);"><i>α</i></span>) + A(<span style="font-family: "Times New Roman"; font-size: 24px; color: rgb(34, 34, 34); text-align: center; background-color: rgb(255, 255, 248);"><i>β</i></span>)
A(<i style="text-align: center;">α</i>-<i style="text-align: center;">β</i>)
A(<i style="text-align: center;">α</i>+<i style="text-align: center;">β</i>)
|
14 |
|
6, -12, -18
-6, 4, 9
-6, -4, -9
-6, 12, 18
|
15 |
The order of the matrix A is 3 x 2 and that of B is 2 x 3. The order of the matrix BA is |
3 x 3
3 x 2
2 x 5
5 x 2
|
16 |
|
0
1
2
4
|
17 |
If the trace of matrix A is 5, then the trace of the matrix 3A is |
3/5
5/3
8
15
|
18 |
If for the matrix A, A5= I, then A-1= |
A<sup>2</sup>
A<sup>3</sup>
A
None of above
|
19 |
|
I
|A|
|A| I
None of these
|
20 |
For a square matrix A, if A = At, then A is called |
matrix
Transpose
Symmetric
Non-symmetric
|
21 |
If A = [aij] is (m x n) matrix, then transpose of A is of the order |
m x m
m x n
n x n
n x m
|
22 |
We also the system of non-homogeneous linear equations by |
a and b
b and c
c and a
a, b and c
|
23 |
Trival solution of homogeneous linear equation is |
(0, 0, 0)
(1, 2, 3)
(1, 3, 5)
a, b and c
|
24 |
For non-trival solution |A| is |
A = 0
A<sup>t</sup>= 0
|A| = 0
None of these
|
25 |
For trival solution |A| is |
A
|A| is non zero
A = 0
None of these
|
26 |
System of linear equations is inconsistent if |
System has no solution
System has one solution
System has two solution
None of above
|
27 |
An equation of the form ax + by = k is homogeneous linear equation when: |
|
28 |
|
|
29 |
|
A
-A
A<sup>t</sup>
A<sup>-</sup>
|
30 |
|
A<sup>-</sup>
A<sup>t</sup>
-A
A
|