1 |
The solution of differential equation: |
dy/dx+y/x = x<sup>2 </sup>is :
4xy = x<sup>4</sup>+ c
4x = x<sup>4</sup>= c
4 y = x<sup>4</sup>+ c
4x=4x<sup>3</sup> + c
|
2 |
An equation in which at least one term contains dy/dx, d2 y /dx2etc, is called. |
Differential equation
Initial condition
General solution
Singular equation
|
3 |
The general solution of the differential equation x dy / dx = 1 + y is: |
2
1
3
None
|
4 |
The area enclosed between the graph y = x2 -4x and the x- axis is: |
20/3
41/3
32/3
25/3
|
5 |
The area under the curve y = 1/x2 between x = 1 and x =4 is: |
-25
0.75
-0.35
-10
|
6 |
The area between the x-axis the curve y =4x-x2 is : |
32/2
15
18
21
|
7 |
The area between the x-axis and the curve y = x2 + 1 from x = 1 to 2 is: |
15/6
15/4
10/4
10/3
|
8 |
∫x/Sin2 x dx is equal to: |
x cot x + ln|sinx |
-x cot x - ln|sinx |
x cot x - ln|sinx |
x. tan x- ln|secx |
|
9 |
∫x sin xdx is equal to: |
sin x/x + cos x
sin x - cos x/x
x cos x + sin x
- x cos x + sin x
|
10 |
∫ x cos dx is equal to : |
x cos x + sin x
cos x + x sin x
x cos x + x sin x
x sin x + cos x
|
11 |
∫sin(ax+b) dx is equal to: |
1/2a cos (ax + b)
-1/a cos (ax +b)
1/a cos (ax +b)
1/a ln (ax + b)
|
12 |
∫Sec2 (ax + b) dx is equal to: |
tan<sup>2</sup> (ax + b)
1/a tan<sup>2</sup> (ax + b)
1/atan (ax +b)
tan (ax + b)
|
13 |
The integral of 3x5dx is: |
15 x<sup>4</sup>
x<sup>6 </sup>/2
1/6x<sup>5</sup>
x<sup>5 </sup>/ln3
|
14 |
∫f(x) is known as: |
Definite itegral
Indefinite integral
Fixed integral
Multiple integral
|
15 |
An integral of 1/x dx is: |
1/x<sup>2</sup>
1/-x<sup>2</sup>
1/lnx
lnx
|
16 |
Which of the following integrals can be evaluated |
|
17 |
|
|
18 |
|
<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 224);"><i>π</i></span>
<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 224);"><i>π/6</i></span>
-<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 224);"><i>π/2</i></span>
2<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 224);"><i>π</i></span>
|
19 |
|
0
1
2
4
|
20 |
|
Always negative
Zero
Always positive
Infinity
|
21 |
If the graph of f is entirely below the x-axis, then the value of definite integral is |
= 0
< 0
> 0
None
|
22 |
If the lower limit of an integral is a constant and the upper limit is a variable, then the integral is a |
Constant function
Variable value
Function of upper limit
All
|
23 |
The arbitrary constants involving in the solution can be determined by the given conditions. Such conditions are called |
Boundaries
Variable separable
Initial values
None
|
24 |
|
Y = -x log x -x + c
Y = x log x + x
Y = x log x - x + c
None of these
|
25 |
|
|
26 |
|
|
27 |
|
X = 100 sin<span style="color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: 24px; text-align: center; background-color: rgb(255, 255, 248);"><i>θ</i></span>
X = 10 sin<span style="font-family: "Times New Roman"; font-size: 24px; color: rgb(34, 34, 34); text-align: center; background-color: rgb(255, 255, 248);"><i>θ</i></span>
X = 100 sec<span style="font-family: "Times New Roman"; font-size: 24px; color: rgb(34, 34, 34); text-align: center; background-color: rgb(255, 255, 248);"><i>θ</i></span>
None of these
|
28 |
|
A variable
A constant
0
None of these
|
29 |
|
|
30 |
|
|