NAT I Medical Physics | Sr
1
2 | Questions If 2.2 kilowatt power is transmitted through a 10 ohm line at 22000 volt, the power loss in he form of heat will be A 50-volt battery is connected across 10-ohm resistor. The current is 4.5 A. The internal | Answers Choice A. 0.1 watt B. 1 watt C. 10 watt D. 100 watt | |--------------|---|---| | | form of heat will be | B. 1 watt
C. 10 watt
D. 100 watt | | 2 | A 50-volt hattery is connected across 10-ohm resistor. The current is 4.5.4. The internal | | | | resistance of the battery is | A. Zero
B. 0.5 Ω
C. 1.1 Ω
D. 5.0 Ω | | 3 | A (100 W, 200 V) bulb is connected to a 160 V power supply. The power consumption would be | A. 64 W
B. 80 W
C. 100 W
D. 125 W | | 4 | Two electric bulbs of 200 W and 100 W have same voltage.If R1 and R2 be their resistance respectively then | A. R ₁ = 2R _{2B. <span style="font-size:
14.44444465637207px;">R
₂<span style="font-size:
14.44444465637207px;"> =
2R₁
C. <span style="font-size:
14.44444465637207px;">R
₂<span style="font-size:
14.44444465637207px;"> =
4R₁
D. <span style="font-size:
14.4444465637207px;">R
₁<span style="font-size:
14.44444465637207px;">R
₁<span style="font-size:
14.44444465637207px;">R
_{1₂}} | | 5 | A ten-ohm electric heater operates on a 110 V line Calculate the rate at which it develops heat in watts: | A. 1310 W
B. 670 W
C. 810 W
D. 1210 W | | 6 | The excess (equal in number) of electrons that must be placed on each of two small spheres spaced 3 cm apart. with force of repulsion between the spheres to be 10 ⁻¹⁹ N is | A. 25
B. 225
C. 625
D. 1250 | | 7 | Two points charges A and B separated by a distance R attract each other with a force of 12 \times 10 ⁻³ N. The force between A and B when the charges on them are doubled and distance is halved | A. 1.92 N
B. 19.2 N
C. 12 N
D. 0.192 N | | 8 | A charge Q is divided into two parts q and Q - q and separated by a distance R. the force of repulsion between them will be maximum when: | A. q = Q/4
B. q = Q/2
C. q = Q
D. None of these |