NAT I Engineering Physics | Sr | Questions | Answers Choice | |----|--|---| | 1 | Two bodies of masses m_1 and m_2 have equal momentum their kinetic energies E_1 and E_2 are in the ratio | A. √m ₁ : √m ₂ B. m ₁ : m ₂ C. m ₂ : m ₂ : m ₁ D. m ₁ csub>1 sub>2 : m ₁ ₁ ₂ m ₂ ₂ ₂ ₂ | | 2 | A body of mass 2 kg is thrown up vertically with K.E of 490 joules If the acceleration due to gravity is 9.8 m/s^2 the height at which the K.E of the body becomes half its original value is give by: | A. 50 m
B. 12.5 m
C. 25 m
D. 10 m | | 3 | A body moves a distance of 10 m along a straight line under the action of a force of 5 Newtons, if the work done is 25 joules the angle which the force takes with the direction of motion of the body is: | A. 0° B. 30° C. 60° D. 90° | | 4 | Two masses of 1 g and 4 g are moving with equal kinetic energies The ratio of the magnitudes of their linear moments is: | A. 4 : 1
B. √2 : 1
C. 1 : 2
D. 1 : 16 | | 5 | Which of the following four statements is false? | A. A body can have zero velocity and still be accelerated B. A body can have a constant velocit and still have a varying speed C. A body can have a constant speed and still have a varying velocity D. The direction of the velocity of a acceleration is constant | | 6 | The initial velocity of a body moving along a straight line in 7 m/s. It has a uniform acceleration of 4 m/s ² . The distance covered by the body in the 5th second of its motion is | A. 25 m
B. 35 m
C. 50 m
D. 85 m | | 7 | The acceleration 'a' in m/s^2 of a particle is given by $a = 3 t^2 + 2 t + 2$,where 't' is the time if the particle starts out with a velocity $v = 2$ m/s at $t = 0$, then the velocity at the end of 2 second is | A. 12 m/s
B. 24 m/s
C. 18 m/s
D. 36 m/s | | 8 | A body is dropped from a tower with zero velocity reaches ground in 4s. The height of the tower is about | A. 80 m
B. 20 m
C. 160 m
D. 40 m | | 9 | What will be the ratio of the distance moved by a freely falling body from rest in 4 th and 5 th seconds of journey? | A. 4:5
B. 7:9
C. 16:25
D. 1:1 | | 10 | A train of 150 m length is going towards north direction at a speed of 10 ms ⁻¹ A parrot flies at a speed of 5 ms ⁻¹ towards south direction parallel to the railway track,The time taken by the parrot to cross the train is equal to | A. 12 s
B. 8 s
C. 15 s
D. 10 s |