

FSC Part 2 Mathematics Full Book Online Test

Sr	Questions	Answers Choice
1	The pair of lines of homogeneous second-degree equation $ax^2 + 2hxy + by^2 = 0$ are real and coincident, if:	A. h ² < ab B. h ² > ab C. h ² = ab D. None of these
2	ax + by + c = 0 has matrix from as:	B. ax + by = -c C. [ax + by] = [c] D. [ax - by] = [-c]
3	Question Image	A. 0 B. 2 C. 1 D1
4	Point of intersection of $x + y = 5 & x - y = 3$ is:	A. (5, 5) B. (4, 2) C. (4, 1) D. (1, 4)
5	Point of intersection of lines $x - 2y + 1 = 0$ and $2x - y + 2 = 0$ equals:	A. (1, 0) B. (0, 1) C. (-1, 0) D. (0, -1)
6	Angle between the lines $x + y + 1 = 0 & x - y + 4 = 0$ is:	A. 30° B. 45° C. 60° D. 90°
7	The line y = a is below the x-axis, if:	A. a > 0 B. a < 0 C. a = 0
8	The point $(2, 5)$ lies the lie $3x - y + 1 = 0$	A. Above B. Below C. On D. None
9	The point (5, 8) lies the line 2x - 3y + 6 = 0	A. Above B. Below C. On D. None
10	The perpendicular distance of the line $3x + 4y + 10 = 0$ from the origin is:	A. 0 B. 1 C. 2 D. 3
11	The equation of a straight line which parallel to the line $3x - 2y + 5 = 0$ and passes through $(2, -1)$ is:	A. $3x + 2y - 8 = 0$ B. $3x - 2y + 8 = 0$ C. $3x - 2y - 8 = 0$ D. $3x + 2y + 8 = 0$
12	General form of equation of line is:	A. $ax - by + c = 0$ B. $ax + by - c = 0$ C. $ax + by + c = 0$ D. $ax - by - c = 0$
13	The equation to the straight line which passes through the point $(2, 9)$ and makes an angle of 45° with x-axis is:	A. $x + y + 7 = 0$ B. $x - y + 7 = 0$ C. $y - x + 7 = 0$ D. None of these
14	y = 2x + 3 is the;	A. Slope-intercept form B. Two points form C. Point slope form D. Intercepts form
15	y = mx + c is the equation of straight line in:	A. Slope-intercept form B. Two points from C. Point slope form D. Intercepts form
		A. Slope-intercept from

16	y - y1 = m ($x - x1$) is the equation of straight line in:	B. Point-slope from C. Normal form D. Intercepts form
17	x = c is a line:	A. Perpendicular to x-axis B. Parallel to x-axis C. Perpendicular to y-axis D. None of these
18	x = 4 is a line:	A. Parallel to x - axis B. Parallel to y - axis C. Perpendicular to y-axis D. None of these
19	The line $y = c$ is above the x - axis, if:	A. c > 0 B. c < 0 C. c = 0
20	If $a = 0$, then the line $ax + by + c = 0$ is parallel to:	A. y - axis B. x - axis C. along y - axis D. None of these