

Physics ICS Part 2 Online MCQ's Test

Sr	Questions	Answers Choice
1	A transistor has:	A. Two regions B. Three regions C. Single regions D. Four regions
2	Transistor was invented by:	A. Bardeen B. Micheal faraday C. Lenz D. Newton
3	Photodiode is used for:	A. Detection of current B. Detection of heat C. Detection of light D. Both a & Detection of light
4	In case of reverse biasing, current is flown due to:	A. Minority charge carriers B. Majority charge carriers C. Electrons D. Protons
5	The p-n junction in which p side is connected to+ive and n-side is -ve the junction is said to be:	A. Neutral B. Forward biased C. Reversed biased D. None of above
6	The P.D develop in case of germanium is:	A. 0.3 B. 0.7 C. 0.5 D. 0.9
7	The P.D develop in case of silicon is:	A. 0.7V B. 0.3V C. 0.5V D. 0.9V
8	The chargeless region after formation of Pn junction is called:	A. Free region B. Depletion region C. Field region D. U.V region
9	Recently superconductor discovered is at temperature.	A. 110K B. 143K C. 16.3K D. 119K
10	The first superconductor was discovered in:	A. 1831 B. 1911 C. 1921 D. 1876
11	Those materials whose resistivity becomes zero at certain temperature is called:	A. Semiconductor B. Super conductor C. Conductor D. Insulator
12	Insulators have:	A. An empty conduction band B. Al full valence band C. A large energy gap D. All of above
13	A semiconductor in its extremely pure form is known as:	A. Intrinsic B. Extrinsic C. Both a and b D. None of above
14	The temperature at which, semiconductor behaves as insulators:	A. 10k B. 0k C. 237k D. None of above
15	Energy band theory is based upon	A. Hund's Rule B. Heisenberg uncertainty principle C. Bohr's atomic Model D. Wave mechanical model

16	Semiconductors have conductivity of order:	A. $10 < sup > -8 < sup > to 10 < sup > -6 < sup > (\Omega m) < sup > -1 < sup > B. 10 < sup > -6 < sup > to 10 < sup > -4 < sup > (\Omega m) < sup > -1 < sup > C. 10 < sup > -1 < sup > C. 10 < sup > 2 < sup > to 10 < sup > -1 < sup > C. 10 < sup > 5 < sup > (\Omega m) < sup > -1 < sup > D. 10 < sup > -1 < sup > C < sup > C < sup > (\Omega m) < sup > -1 < sup > C < s$
17	Conductors have conductivities of order:	A. $10 < sup > 3 < sup > (\Omega m) - 1$ B. $10 < sup > 7 < / sup > (\Omega m) < sup > - 1 < / sup > C$. $10 < sup > 7 < / sup > \Omega m < sup > - 1 < / sup > D$. $10 < sup > 6 < / sup > \Omega$