

ICS Part 2 Mathematics Chapter 4 Test Online

Sr	Questions	Answers Choice
1	Two non parallel lines intersect each other at:	A. 1 point B. 2 points C. 3 points D. 4 points
2	Equation of the line parallel to $x + 3y - 9 = 0$ is:	A. $3x - y - 9 = 0$ B. $3x + 9y + 7 = 0$ C. $2x - 6y - 18 = 0$ D. $x - 3y + 9 = 0$
3	A linear equation in two variables represents:	A. Circle B. Ellipse C. Hyberbola D. Straight line
4	The centroid of the triangle whose vertices are $(3, -5)$, $(-7, 4)$ and $(10, -2)$ is:	A. (-2, -2) B. (-2, 2) C. (2, -1) D. (0, 0)
5	ax + by + c = 0, will represent equation of straight line parallel y-axis if:	A. a = 0 B. b = 0 C. c = 0 D. a = 0, c = 0
6	Joint equation of $y + 2x = 0$, $y - 3x = 0$ is:	A. $(y+2x)(y-3x) = 0$ B. $(y-2x)(y-3x) = 0$ C. $(y+2x)(y+3x) = 0$ D. $(y-2x)(y+3x) = 0$
7	A pair of lines of homogeneous second degree equation $ax^2 + 2hxy + by^2 = 0$ are othogonal, if:	A. a - b = 0 B. a + b = 0 C. a + b > 0 D. a - b ⁢ 0
8	The pair of lines of homogeneous second-degree equation $ax^2 + 2hxy + by^2 = 0$ are real and coincident, if:	A. h ² < ab B. h ² > ab C. h ² = ab D. None of these
9	ax + by + c = 0 has matrix from as:	B. ax + by = -c C. [ax + by] = [c] D. [ax - by] = [-c]
10	Question Image	A. 0 B. 2 C. 1 D1
11	Point of intersection of $x + y = 5 \& x - y = 3$ is:	A. (5, 5) B. (4, 2) C. (4, 1) D. (1, 4)
12	Point of intersection of lines $x - 2y + 1 = 0$ and $2x - y + 2 = 0$ equals:	A. (1, 0) B. (0, 1) C. (-1, 0) D. (0, -1)
13	Angle between the lines $x + y + 1 = 0 & x - y + 4 = 0$ is:	A. 30° B. 45° C. 60° D. 90°
14	The line y = a is below the x-axis, if:	A. a > 0 B. a < 0 C. a = 0
15	The point (2, 5) lies the lie $3x - y + 1 = 0$	A. Above B. Below C. On D. None
		A. Above

16	The point (5, 8) lies the line $2x - 3y + 6 = 0$	B. Below C. On D. None
17	The perpendicular distance of the line $3x + 4y + 10 = 0$ from the origin is:	A. 0 B. 1 C. 2 D. 3
18	The equation of a straight line which parallel to the line $3x - 2y + 5 = 0$ and passes through (2, -1) is:	A. $3x + 2y - 8 = 0$ B. $3x - 2y + 8 = 0$ C. $3x - 2y - 8 = 0$ D. $3x + 2y + 8 = 0$
19	General form of equation of line is:	A. ax - by + c = 0 B. ax + by - c = 0 C. ax + by + c = 0 D. ax - by - c = 0
20	The equation to the straight line which passes through the point $(2, 9)$ and makes an angle of 45° with x-axis is:	A. $x + y + 7 = 0$ B. $x - y + 7 = 0$ C. $y - x + 7 = 0$ D. None of these