

FSC Part 2 Mathematics Chapter 6 Online Test

Sr	Questions	Answers Choice
1	The opening of the parabola $y^2 = 4ax$ is to the of the:	A. Left B. Upward C. Right D. Downward
2	If the equation of the parabola is $x^2 = 4ay$, then opening of the parabola is to of the x-axis:	A. Left B. Upward C. Right D. Downward
3	If the equation of the parabola is $y^2 = 4ax$, then opening of the parabola is to the right of the:	A. x-axis B. y = x C. y-axis D. x + y =0
4	The graph of the parabola y^2 = -4ax lies in quadrants:	A. I and II B. III and IV C. II and III D. I and III
5	The graph of the parabola x^2 = -4ay lies in quadrants:	A. I and II B. III and IV C. II and III D. I and III
6	The parabola y^2 = 4ax lies in quadrants:	A. I and II B. III and IV C. II and III D. I and IV
7	The graph of the the parabola x^2 = 4ay lies in quadrant:	A. I and II B. III and IV C. II and III D. I and III
8	A chord passing through the focus of a parabola is called a of the parabola:	A. Directrix B. Latus rectum C. Focus D. Focal chord
9	A line segment joining two distinct points on a parabola is called a of the parabola:	A. Chord B. Vertex C. Focus D. Directrix
10	The number e denotes the of the conic:	A. Directrix B. Vertex C. Focus D. Eccentricity
11	If the focus lies on the y - axis with coordinates $F(0, a)$ and directrix of the parabola is y = -a, then the equation of parabola is:	A. x ² = 4ay Bx ² = 4ay Cy ² = 4ax D. y ² = 4ax
12	The directrix of the parabola x^2 = 4ay is:	A. x = a B. x = -a C. y = a D. y = -a
13	The conic is a parabola, if:	A. e = 1 B. e > 1 C. 0 < e < 1 D. e = 0
14	If the focus lies on the x-axis with coordinates $F(a, 0)$ and directrix of the parabola is = - a then the equation of parabola is:	A. x ² = 4ay B. y ² = 4ax Cx ² = 4ay Dy ² = 4ax
15	y^2 = 4ax, is the standard equation of the:	A. Ellipse B. Parabola C. Hyperbola D. None of these

16	Question Image	B. 0 C. 4 D. 7
17	Length of tangent from (a, 0) to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is:	B. c C. 2g + 2f -c D. None
18	Length of tangent from (0,1) to $x^2 + y^2 + 6x - 3y + 3 = 0$	A. 2 B. 1 C. 4 D. 3
19	Two real and distinct tangents can be drawn to a circle from any point $P(x_1, y_1)$ the circle:	A. Inside B. On C. Outside D. None of these
20	An angle in a semi-circle is:	A. 0° B. 90° C. 180° D. 60°