

Mathematics Fsc Part 1 Online Test

Sr	Questions	Answers Choice
1	When a rational fraction is separated into partial fractions, the result is:	
2	A numbers exceeds its square root by 6, the number is:	A. 6 B. 3 C. 9 D. none of these
3	Solution set of the simultaneous equations : $x + y = 1$, $x - y = 1$ is:	A. {(0,0)} B. {(1,0)} C. {(0,1)} D. {(1,1)}
4	Equations having a common solution are called:	A. linear B. quadratic C. homogeneous D. simultenaeous
5	The roots of the equation $25x^2 - 30x + 9 = 0$ are;	A. rational B. irrational C. equal D. complex
6	In $ax^2 + bx + c = 0$, if $b^2 - 4ac > 0$ and perfect square the roots are:	A. rational B. irrational C. equal D. complex
7	For what value of k, the roots of the equation $x^2 + \sqrt{k} x + 2 = 0$ are equal:	A. 1 B. 8 C. 2 D. 4
8	If the Discriminant of a quadratic equation is a perfect square, then roots are:	A. real and equal B. complex C. rational D. irrational
9	Question Image	A. linear equation B. Quadraticequation
	adobilon in ago	C. cubicequation D. radicalequation
10	If the sum of the roots of ax^2 - $(a + 1) x + (2a + 1) = 0$ is 2, then the product of the roots is:	
10		D. radical equation A. 1 B. 2 C. 3
	If the sum of the roots of ax^2 - $(a + 1) x + (2a + 1) = 0$ is 2, then the product of the roots is:	D. radical equation A. 1 B. 2 C. 3 D. 4 A. 0 B. 1 C1
11	If the sum of the roots of ax^2 - $(a + 1) x + (2a + 1) = 0$ is 2, then the product of the roots is: If the roots of x^2 - $bx + c = 0$ are two consecutive integers, then: b^2 - $4ac = 0$	D. radical equation A. 1 B. 2 C. 3 D. 4 A. 0 B. 1 C1 D. 2 A. ±1 B. 4 C. ±4
11	If the sum of the roots of ax^2 - $(a + 1) x + (2a + 1) = 0$ is 2, then the product of the roots is: If the roots of x^2 - $bx + c = 0$ are two consecutive integers, then: b^2 - $4ac =$ For what value of k, the sum of the roots of the equation $x^2 + kx + 4 = 0$ is equal to the product of its roots:	D. radical equation A. 1 B. 2 C. 3 D. 4 A. 0 B. 1 C1 D. 2 A. ±1 B. 4 C. ±4 D4 A. 1 B. 2 C. 3
11 12 13	If the sum of the roots of ax^2 - $(a + 1) x + (2a + 1) = 0$ is 2, then the product of the roots is: If the roots of x^2 - $bx + c = 0$ are two consecutive integers, then: b^2 - $4ac = 0$ For what value of k, the sum of the roots of the equation $x^2 + kx + 4 = 0$ is equal to the product of its roots: If the sum of the roots of the equation $kx^2 - 2x + 2k = 0$ is equal to their product, then the value of k is:	D. radical equation A. 1 B. 2 C. 3 D. 4 A. 0 B. 1 C1 D. 2 A. ±1 B. 4 C. ±4 D4 A. 1 B. 2 C. 3 D. 4 A. 7:12 B. 2:3 C. 3:2

		D. 5
	Sum of all four fourth roots of unity is:	A. 1
7		B. 0
,		C1
		D. 3
		2.0
	Sum of all three cube roots of unity is:	A. 1
		B1
3		C. 0
		D. 3
9	How many complex cube roots of unity are there:	A. 2 B. 0 C. 1 D. 3
	Complex roots of real quadratic equation always occur in:	A. conjugate pair
)		B. ordered pair
-		C. reciprocal pair
		D. none of these