

Mathematics Fsc Part 1 Online Test

Sr	Questions	Answers Choice
1	No. of diagonals can be formed by joining the vertices of the polygon having 12 sides?	A. 70 B. 54 C. 70 D. 73
2	No. of diagonals can be formed by joining the vertices of the polygon having 5 sides ?	A. 5 B. 15 C. 51 D. 10
3	The number of diagonals of a polygon with n sides is:	D. none of these
4	No. of triangles can be formed by joining the vertices of the polygon having 5 sides?	A. 10 B. 15 C. 20 D. none of these
5	No. of triangles can be formed by joining the vertices of the polygon having 12 sides?	A. 202 B. 220 C. 110 D. none of these
6	No. of arrangements of the letters of the word PAKPATTAN can be made, taken all together ?	A. 15130 B. 15120 C. 1512 D. none of these
7	No. of arrangements of the letters of the word PAKISTAN can be made, taken all together?	A. 21160 B. 20160 C. 20170 D. 20016
8	No. of arrangements can be made of 4 letters a, b, c, d taken 2 at a time?	A. 8 B. 12 C. 10 D. 14
9	If ${}^{n}P_{2} = 30$ then $n = :$	A. 5 B. 6 C. 2 D. 3
10	Numbers are formed by using all the digits 1, 2, 3, 4, 5, 6 on digit being repeated, then the numbers which are divisible by 5 are:	A. 110 B. 120 C. 122 D. 124
11	How many different number can be formed by taking 4 out of the six digits 1, 2, 3, 4, 5, 6:	A. 360 B. 120 C. 366 D. none of these
12	Number of digits multiple of 5 made from the digits 2, 3, 5, 7, 9 is:	A. 5 B. 24 C. 20 D. none
13	No. of signals made by 4 flags of different colors using 2 flags at a time:	A. 6 B. 12 C. 60 D. none
14	No. of signals made by 5 flags of different colors using 3 flags at a time is:	A. 60 B. 15 C. 10 D. None
15	No. of arrangements of the letters of the word plane taking all letters at a time:	A. 5 B. 1 D. none
16	In how many ways two places can be filled by n objects:	A. n(n-1) B. 2! C. n(n+1) D. None

17	No. of selection of n different things out of n is:	A. 1 B. n C. n! D. none
18	The factorial of positive integer is:	A. rational no. B. positive integer C. real no. D. none
19	For a positive integer n:	A. $(n+1)! = (n+1)n!$ B. $(n+1)! = (n+1)(n-1)!$ C. $n! = n(n+1)!$ D. none of these
20	n! stands for:	A. product of first natural numbers B. sum of n natural numbers C. product of n integers D. none of these