

11th Class FSC Mathematics Chapter 4 Test Online

Sr	Questions	Answers Choice
1	Sum of roots of $ax^2 + bx + c = 0$ is equal to product of roots only if:	A. a+c=0 B. b+c=0 C. a+b=0 D. a+b+c=0
2	Four fourth roots of 625 are:	A. ±5,±5i B. ±5,±25i C. ±25,±25i D. none of these
3	Question Image	D. none of these
4	Question Image	A. 4 B. 16 C. 8 D. 64
5	Question Image	A. 1 B. 0 C. 2 D. 3
6	Question Image	D. i
7	If one root of $2x^2 + ax + 6 = 0$ is 2 then the value of a is:	A. 7 B7
8	A numbers exceeds its square root by 6, the number is:	A. 6 B. 3 C. 9 D. none of these
9	Solution set of the simultaneous equations : $x + y = 1$, $x - y = 1$ is:	A. {(0,0)} B. {(1,0)} C. {(0,1)} D. {(1,1)}
10	Equations having a common solution are called:	A. linear B. quadratic C. homogeneous D. simultenaeous
11	The roots of the equation $25x^2 - 30x + 9 = 0$ are;	A. rational B. irrational C. equal D. complex
12	In $ax^2 + bx + c = 0$, if $b^2 - 4ac > 0$ and perfect square the roots are:	A. rational B. irrational C. equal D. complex
13	For what value of k, the roots of the equation $x^2 + \sqrt{k} x + 2 = 0$ are equal:	A. 1 B. 8 C. 2 D. 4
14	If the Discriminant of a quadratic equation is a perfect square, then roots are:	A. real and equal B. complex C. rational D. irrational
15	Question Image	A. linear equation B. Quadraticequation C. cubicequation D. radicalequation
16	If the sum of the roots of ax^2 - $(a + 1) x + (2a + 1) = 0$ is 2, then the product of the roots is:	A. 1 B. 2 C. 3 D. 4
17	If the roots of x^2 - bx + c = 0 are two consecutive integers, then: b^2 - 4ac =	A. 0 B. 1 C1

		D. 2
		A. ±1
18	For what value of k, the sum of the roots of the equation $x^2 + kx + 4 = 0$ is equal to the product of its roots:	B. 4
Ö		C. ±4
		D4
	If the sum of the roots of the equation $kx^2 - 2x + 2k = 0$ is equal to their product, then the value of k is:	A. 1
0		B. 2
9		C. 3
		D. 4
	The ration of the sum and product of roots of $7x^2$ - $12x + 18 = 0$ is:	A. 7:12
0		B. 2:3
20		C. 3:2
		D. 7:18