

Mathematics FA Part 1 Online Test

Sr	Questions	Answers Choice
1	Question Image	A. linear equation B. Quadraticequation C. cubicequation D. radicalequation
2	If the sum of the roots of ax^2 - $(a + 1) x + (2a + 1) = 0$ is 2, then the product of the roots is:	A. 1 B. 2 C. 3 D. 4
3	If the roots of x^2 - bx + c = 0 are two consecutive integers, then: b^2 - 4ac =	A. 0 B. 1 C1 D. 2
4	For what value of k, the sum of the roots of the equation $x^2 + kx + 4 = 0$ is equal to the product of its roots:	A. ±1 B. 4 C. ±4 D4
5	If the sum of the roots of the equation $kx^2 - 2x + 2k = 0$ is equal to their product, then the value of k is:	A. 1 B. 2 C. 3 D. 4
6	The ration of the sum and product of roots of $7x^2$ - $12x + 18 = 0$ is:	A. 7:12 B. 2:3 C. 3:2 D. 7:18
7	Synthetic division is a process of:	A. division B. subtraction C. addition D. multiplication
8	If a polynomial $P(x) = x^2 + 4x^2 - 2x + 5$ is divided by $x - 1$, then the reminder is:	A. 8 B2 C. 4 D. 5
9	Sum of all four fourth roots of unity is:	A. 1 B. 0 C1 D. 3
10	Sum of all three cube roots of unity is:	A. 1 B1 C. 0 D. 3
11	How many complex cube roots of unity are there:	A. 2 B. 0 C. 1 D. 3
12	Complex roots of real quadratic equation always occur in:	A. conjugate pair B. ordered pair C. reciprocal pair D. none of these
13	The roots of the equation:	A. complex B. irrational C. rational D. none of these
14	If α , β are the roots of x^2 + kx + 12=0 such that α - β = 1 then K = :	A. 0 B. ±5 C. ±7 D. ±15
15	If α , β are complex cube roots of unity, then 1 + α^n + β^n = where n is a positive integer divisible by 3:	A. 1 B. 3 C. 2 D. 4

6	$3^{2x} - 3^{x} - 6 = 0$ is:	A. reciprocal equation B. exponential equation C. radical equation D. none of these
7	Question Image	A. quadratic equation B. reciprocal equation C. exponential equation D. none of these
8	One of the roots of the equation $3x^2 + 2x + k = 0$ is the reciprocal of the other, then $k = \dots$	A. 3 B. 2 C. 1 D. 4
9	If $P(x)$ is a polynomial of degree m and $Q(x)$ is a polynomial of degree n, the quotient $P(x) + Q(x)$ will produce a polynomial of degree:	A. m. n, plus a quotient B. m - n, plus a remainder C. m ÷ n, plus a factor D. m + n, plus a remainder
0	If $P(x)$ is a polynomial of degree m and $Q(x)$ is a polynomial of degree n, the product $P(x)$. $Q(x)$ will be a polynomial of degree:	A. m. n B. m - n C. m + n D. m × n