Mathematics FA Part 1 Online Test | Sr | Questions | Answers Choice | |----|--|---| | 1 | Question Image | A. linear equation B. Quadraticequation C. cubicequation D. radicalequation | | 2 | If the sum of the roots of ax^2 - $(a + 1) x + (2a + 1) = 0$ is 2, then the product of the roots is: | A. 1
B. 2
C. 3
D. 4 | | 3 | If the roots of x^2 - bx + c = 0 are two consecutive integers, then: b^2 - 4ac = | A. 0
B. 1
C1
D. 2 | | 4 | For what value of k, the sum of the roots of the equation $x^2 + kx + 4 = 0$ is equal to the product of its roots: | A. ±1
B. 4
C. ±4
D4 | | 5 | If the sum of the roots of the equation $kx^2 - 2x + 2k = 0$ is equal to their product, then the value of k is: | A. 1
B. 2
C. 3
D. 4 | | 6 | The ration of the sum and product of roots of $7x^2$ - $12x + 18 = 0$ is: | A. 7:12
B. 2:3
C. 3:2
D. 7:18 | | 7 | Synthetic division is a process of: | A. division B. subtraction C. addition D. multiplication | | 8 | If a polynomial $P(x) = x^2 + 4x^2 - 2x + 5$ is divided by $x - 1$, then the reminder is: | A. 8
B2
C. 4
D. 5 | | 9 | Sum of all four fourth roots of unity is: | A. 1
B. 0
C1
D. 3 | | 10 | Sum of all three cube roots of unity is: | A. 1
B1
C. 0
D. 3 | | 11 | How many complex cube roots of unity are there: | A. 2
B. 0
C. 1
D. 3 | | 12 | Complex roots of real quadratic equation always occur in: | A. conjugate pair B. ordered pair C. reciprocal pair D. none of these | | 13 | The roots of the equation: | A. complex B. irrational C. rational D. none of these | | 14 | If α , β are the roots of x^2 + kx + 12=0 such that α - β = 1 then K = : | A. 0
B. ±5
C. ±7
D. ±15 | | 15 | If α , β are complex cube roots of unity, then 1 + α^n + β^n = where n is a positive integer divisible by 3: | A. 1
B. 3
C. 2
D. 4 | | 6 | $3^{2x} - 3^{x} - 6 = 0$ is: | A. reciprocal equation B. exponential equation C. radical equation D. none of these | |---|---|--| | 7 | Question Image | A. quadratic equation B. reciprocal equation C. exponential equation D. none of these | | 8 | One of the roots of the equation $3x^2 + 2x + k = 0$ is the reciprocal of the other, then $k = \dots$ | A. 3
B. 2
C. 1
D. 4 | | 9 | If $P(x)$ is a polynomial of degree m and $Q(x)$ is a polynomial of degree n, the quotient $P(x) + Q(x)$ will produce a polynomial of degree: | A. m. n, plus a quotient B. m - n, plus a remainder C. m ÷ n, plus a factor D. m + n, plus a remainder | | 0 | If $P(x)$ is a polynomial of degree m and $Q(x)$ is a polynomial of degree n, the product $P(x)$. $Q(x)$ will be a polynomial of degree: | A. m. n
B. m - n
C. m + n
D. m × n |