ECAT Pre General Science Online Test | Sr | Questions | Answers Choice | |----|--|--| | SI | QUESTIONS | | | 1 | For two resistance wires joined in parallel, the resultant resistance is 6/5 ohm. When one of the resistance wire breaks, the effective resistance becomes 2 ohm. The resistance of the broken wire is | A. 3/5 ohm
B. 2 ohm
C. 6/5 ohm
D. 3 ohm | | 2 | A uniform resistance wire of Length L and diameter d has a resistance R. Another wire of same material has length, 4L and diameter 2d, the resistance will be | A. 2 R
B. R
C. R/2
D. R/4 | | 3 | Calculate the amount of charge flowing in 2 minutes in a wire of resistance 10 Ω when a potential difference of 20 V is applied between its ends | A. 120 C
B. 240 C
C. 20 C
D. 4 C | | 4 | 10 ⁶ electrons are moving through a wire per second, the current developed is | A. 1.6 x 10 ⁻¹⁹ B. 1 A C. 1.6 x 10 ⁻¹⁵ A D. 10 ⁶ A | | 5 | The resistance of 20 cm long wire is 10 Ω . When the length is changed to 40 cm. The new resistance is | A. 10 Ω B. 20 Ω C. 30 Ω D. 40Ω | | 6 | If two bulbs one of 60 W and other of 100 W are connected in parallel, then which one of the following will flow more? | A. 60 W bulb B. 100 W bulb C. Both equally D. None of these | | 7 | Which one of the following causes production of heat when current is set up in a wire? | A. Fall of electrons from higher orbits to lower orbits B. Inter-atomic collisions C. Inter-electron collisions D. Collisions of conduction electron with atoms | | 8 | Three resistors of resistance R each are combined in various ways. Which of the following cannot be obtained? | A. $3R$ <span style='color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: <math>24px</math>, textalign: center; background-color: rgb(255, 255, 248);'>Ω B. $2R$ /4 <span style='color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: <math>24px</math>, textalign: center; background-color: rgb(255, 255, 248);'>Ω C. R /3 <span style='color: rgb(34, 34, 34); font-family: "Times New Roman"; font-size: <math>24px</math>, textalign: center; background-color: rgb(255, 255, 248);'>Ω D. Ω /2
Ω /5
Ω /5
 | | | | D. 2r/3 Ω | |----|--|---| | 9 | The resistance of the given conductor can be increased by | A. Increasing the area B. Changing resistivity C. Decreasing the length D. None of the above because change does not matter because in any case the volume remains the same | | 10 | A 100 W, 200 V bulb is connected to a 160 volts supply. The actual power consumption would be | A. 64 W
B. 80 W
C. 100 W
D. 125 W | | 11 | A 60 W bulb operates on 220 V supply. The current flowing through the bulb is | A. 11/3 A
B. 3 A
C. 3/11 A
D. 6 | | 12 | At ordinary temperature, an increase in temperature increases the conductivity of | A. Conductor B. Semiconductor C. Insulator D. Alloy | | 13 | Potentiometer is more sensitive than voltmeter, because | A. Voltmeter has a very high resistance B. Voltmeter has a very low resistance C. Potentiometer does not draw any current from a source of unknown potential difference D. Potentiometer is sensitive | | 14 | A car battery has e.m.f 12 volt and internal resistance 5×10^{-2} ohm. If it draws 60 ampere current, the terminal voltage of the battery will be | A. 5 volt B. 3 volt C. 15 volt D. 9 volt | | 15 | Specific resistance of a wire depends upon | A. Length B. Cross-section area C. Mass D. None | | 16 | Cause of heat production in a current carrying conductor is | A. Collisions of free electrons with one another B. High drift speed of free electrons C. Collisions of free electrons with atoms or ions of conductor D. High resistance value | | 17 | In a building, there are 15 bulbs of 40 watts, 5 bulbs of 100 watts, 5 fans of 80 watts and a heater of 1 kilowatt. The voltage of the electric main is 220 volts. The minimum efficiency of the main fuse of the building will be | A. 0.4 A
B. 11.4 A
C. 9.8 A
D. 10.6 A | | 18 | The powers of tow electric bulbs are 100 W and 200 W. Both of them are joined with 220 V mains. The ratio of resistances of their filaments will be | A. 1:2
B. 2:1
C. 1:4
D. 4:1 | | 19 | A 10 F capacitor is charged to a potential difference of 50 V and is connected to another uncharged capacitor in parallel. Now the common potential difference becomes 20 volt. The capacitance of second capacitor is | A. 10 µ F B. 20 µ F C. 30 µ F D. 15 µ F | | 20 | A certain charge liberates 0.8 g of oxygen. The same charge will liberate. how many g of | A. 108 g
B. 10.8 g | 20 | | Silver ? | C. U.o g
D. 108/0.8 g | |----|--|--| | 21 | In a voltmeter the conduction takes place due to | A. Electrons only B. Holes only C. Electrons and holes D. Electrons and ions | | 22 | A conducting wire is drawn to double its length. Final resistivity of the material will be | A. Double of the original one B. Half of the original one C. One fourth of the original one D. Same as original one | | 23 | A piece of fuse wire melts when a current of 15 ampere flows through it. With this current. If it dissipates 22.5 W, the resistance of fuse wire will be | A. Zero B. 10 Ω C. 1 Ω0. 10Ω0. 10Ω | | 24 | If 2.2 kilowatt power is transmitted through a 10 ohm line at 22000 volt, the power loss in the form of heat will be | A. 0.1 watt B. 1 watt C. 10 watt D. 100 watt | | 25 | The conductivity of a superconductor is | A. Infinite B. Very large C. Very small D. Zero | | 26 | If 2.2 kilowatt power is transmitted through 1 10 ohm line at 22000 volt, the power loss in the form of heat will be | A. 0.1 watt B. 1 watt C. 10 watt D. 100 watt | | 27 | A 50 volt battery is connected across 10 ohm resistor. The current is 4.5 A. The internal resistance of the battery is | A. Zero B. 0.5 Ω C. 1.1 Ω D. 5.0 Ω D. 5.0 Ω | | 28 | A (100 W , 200 W) bulb is connected to a 160 V power supply. The power consumption would be | A. 64 W
B. 80 W
C. 100 W
D. 125 W | | 29 | A wire of radius r has resistance R. If it is stretched to a wire of r/2 radius, then the resistance becomes | A. 2R
B. 4R
C. 16R
D. Zero | | 30 | Two electric bulbs of 200 W and 100 W have same voltage. If $R_1 \text{and}\ R_2 \text{be}$ their resistance respectively then | A. R ₁ = 2R ₂ B. R ₂ = 2R ₁ C. R ₂ = 4R ₁ D. R ₁ = 4R ₂ |