

ECAT Pre General Science Physics Chapter 8 Waves Online Test

Sr	Questions	Answers Choice
1	Smaller the damping, the resonance will be	A. more flat B. more sharp C. both of them D. none of them
2	Smaller the damping, greater will be the	A. frequency B. wavelength C. amplitude D. none of them
3	The damping depends upon the	A. amplitude B. sharpness C. both of them D. none of them
4	The resonance will be sharp, if the amplitude decreases rapidly at a frequency	A. equal to the resonant frequency B. slight different from the resonant frequency C. greatly different from the resonant frequency D. any one of them
5	In the resonance condition, the amplitude of the oscillator becomes	A. very large B. very small C. zero D. any one of them
6	Shock absorber of the car is an example of	A. resonance B. forced oscillations C. interference D. damped oscillations
7	The process in which energy is dissipated from the oscillating system is known as	A. resonance B. interference C. diffraction D. damping
8	As the bob of the pendulum moves to and fro which of the force is experienced by the bob	A. its weight B. tension in the string C. viscous drag force by air D. all of them
9	While describing the motion of a simple pendulum, the frictional effects are	A. taken into account B. completely ignored C. partially ignored D. none of them
10	Such oscillations in which the amplitude decreases steadily with time, are called	A. resonance B. force oscillations C. large oscillations D. damped oscillations
11	The waves produced in a microwave oven have wavelength.	A. 12 mm B. 12 cm C. 12 m D. 12 mm
12	The waves produced in a microwave oven have frequency	A. 2450 Hz B. 2450 K Hz C. 2450 M Hz D. 2450 G Hz
13	A swing has	A. one natural frequency B. two natural frequencies C. three natural frequencies D. four natural frequencies
14	Which one of the following is an example of resonance	A. swing B. tuning a radio C. microwave oven D. all of them
		A. greater than the frequency of applied force

15	5	harmonic oscillator	force C. less than the frequency of applied force D. all of them
16	6	At 'resonance' the transfer of energy from deriving source to the oscillator is	A. maximum B. minimum C. zero D. none of them
17	7	In a resonance situation the amplitude of the motion may become extra ordinarily large, if	A. the driving force is large B. the driving force is zero C. the driving force may be feeble D. all of them
18	3	If the external driving force is periodic with a period compareable to the natural period of the oscillator, then we get	A. diffraction B. beat C. interference D. resonance
19	9	Associated with the motion of a driven harmonic oscillator, there is a very striking phenomenon, know as	A. waves B. beat C. interference D. resonance
20)	The vibrations of factory floor caused by the running of heavy machinery is an example of	A. free vibration B. natural vibrations C. forced vibrations D. all of them
21	1	A physical system under going forced vibrations is known as	A. Simple harmonic oscillator B. Compound harmonic oscillator C. Physical harmonic oscillator D. driven harmonic oscillator
22	2	If a freely oscillating system is subjected to an external force, then	A. free vibrations will take place B. the body will move with its natural frequency C. forced vibrations will take place D. none of them
23	3	The natural frequency of a pendulum which is vibrating freely, depends upon its	A. mass B. length C. material D. all of them
24	1	The frequency of free vibrations is known as	A. free frequency B. forced frequency C. natural frequency D. un-natural frequency
25	5	A body is executing free vibrations when it oscilates	A. with the interference of an external force B. without the interference of an external force C. with the interference of an internal force D. none of them
26	6	If a simple pendulum is shifted from karachi to K-2 cliff, its time period	A. remains the same B. decreases C. increases D. none of them
27	7	The time period of pendulums of different lengths would be	A. same B. different C. both of them D. none of them
28	3	A second's pendulum is a pendulum whose time period is	A. 1 second B. 2 seconds C. 3 seconds D. 4 seconds
29	9	If the mass of the simple pendulum becomes double, its time period	A. increase B. decreases C. remains constant D. none of them
30)	If we increase the length of a simple pendulum four times, its time period will become	A. 2 times B. 3 times C. 4 times D. 6 times