ECAT Pre General Science Physics Chapter 5 Circular Motion Online Test | Sr | Questions | Answers Choice | |----|--|---| | 1 | Radian is defined as the angle subtended at the center of a circle by an arc of: | A. Length equal to its diameter B. Length equal to its radius C. Any length D. None of these | | 2 | A body moving along the circumference of a circle of radius R completes one revolution. The radius of the covered path to the angle subtended at the center is: | A. Radius of the circle B. Twice the radius C. Thrice the radius D. None of these | | 3 | A flywheel accelerates from rest to an angular velocity of 7 rad/sec in 7 seconds. Its average acceleration will be: | A. 49 rad/sec ² B. 1 rad/sec ² C. 0.16 rev/sec ² D. Both A and C E. Both B and C | | 4 | A car is turning around a corner at 10 m/sec as it travels along an arc of circle. If value of centripetal acceleration is 10 m/sec ² in this case, find radius of the circular path: | A. 1 m
B. 5 m
C. 10 m
D. 15 m | | 5 | A 1000 Kg car travelling with a speed of 90 km/hr turns around a curve of radius 0.1 km. The necessary centripetal force comes out to be: | A. 8.1 X 10 ⁷ N B. 625 N C. 6250 N D. None of these | | 6 | A rotating wheel accelerates up to the value of 0.75 rev/sec ² after 2 seconds of its start. Its angular velocity becomes: | A. 9.42 rad/sec B. 2.6 rev/sec C. 1.5 rev/sec D. Both A and C | | 7 | The rear wheels of an automobile are rev/sec which is reduced to 38 rad/sec in 5 seconds when brakes are applied. Its angular acceleration is: | A. 5 rad/sec ² B10 rav/sec ² C10 rad/sec ² D5 rav/sec ² | | 8 | A car is moves around a circular track of radius 0.3 m at the rate of 120 rev/min. The speed v of the car is: | A. 38 m/sec B. 3.8 m/sec C. 0.6 m/sec D. None of these | | 9 | A stone is tied to the end of a 20 cm along string is whirled in a horizontal circle. if centripetal acceleration is 9.8 m/sec ² , then its angular velocity in rad/sec is: | A. 22/7
B. 7
C. 14
D. 21 | | 10 | One radian is equal to: | A. 30.3 ° B. 45.3 ° C. 50.3 | | | | background-size: initial; background-
repeat: initial; background-
attachment: initial; background-origin:
initial; background-clip:
initial;">° | | |----|--|---|-----------------------------------| | 11 | When a body is moves along a circular path with constant speed, it has an acceleration, which is always directed: | A. Along the tangent B. Toward the centre C. Away from the centre D. None of them | | | 12 | One radian is: | A. Greater than one degree B. Less than one degree C. Equal to one degree D. None of them | | | 13 | Centripetal acceleration is also called acceleration: | A. Tangential B. Radial C. Angular D. None of them | | | 14 | Direction of motion in circular of motion: | A. Changes off and on B. Changes continuously C. Does not change D. None of them | | | 15 | Conventionally the angular velocity is directed to an angle of: | A. 90 ° to the axis of rotation B. 30° to the axis of rotation C. 0<span and="" are:<="" earth="" from="" receive="" satellites="" signals="" stations"="" style="font-size: 10.5pt; line-height: 107%; font-family: Arial, sans-serif; background-image: initial; background-position: initial; background-position: initial; background-position: initial; background-attachment: initial; background-attachment: initial; background-origin: background-origi</td></tr><tr><td>16</td><td>A point on the rim of a wheel moves 0.2 m when the wheel turns through an angle of 14.3 degrees. The radius of the wheel is:</td><td>A. 0.05 m
B. 0.08 m
C. 0.8 m
D. 0.008 m</td></tr><tr><td>17</td><td>Einstein's theory about gravity if better than Newton's because it gave explanation of:</td><td>A. Inverse square law B. Bending of light C. Both A and B D. None of above</td></tr><tr><td>18</td><td>INTELSAT operates at frequencies 4, 6, 11, 14 having unit of:</td><td>A. KHz
B. MHz
C. GHz
D. BHz</td></tr><tr><td>19</td><td>The number of " td="" them="" to="" transmit="" which=""><td>A. 3
B. 24
C. 126
D. 200</td> | A. 3
B. 24
C. 126
D. 200 | | 20 | The net force acting on a 100 kg man standing in an elevator accelerating downward with a = 0.8 m sec ⁻² comes out to: | A. 980 N
B. 580 N
C. 1380 N
D. Zero | | | 21 | If a gymnast is sitting on a rotating stool with his arms outstretched, brings his arms towards the chest, then its angular velocity will: | A. Increase B. Decrease C. Remains constant D. None of these | | | | | A. <font face="arial, sans, sans-
serif"> | | sans-serii; packground-image: initial; background-position: initial; | 22 | Conventional the angular Velocity is Directed at an angle of: | style="font-size: 10.5pt; line-height: 107%; font-family: Arial, sans-serif; background-image: initial; background-position: initial; background-epeat: initial; background-origin: initial; background-origin: initial; background-origin: initial; background-clip: initial;">° to the axis of rotation B. 30 ° to the axis of rotation C. 0 | |----|---|--| |----|---|--| เอ.ออองpx; >ชบ</ioni><span