ECAT Pre General Science Physics Chapter 19 Dawn of Modern Physics Online Test | Sr | Questions | Answers Choice | |----|--|---| | 1 | When low energy photon interact with a metal, which of the following effect is likely to be taken place | A. pair production B. photoelectric C. Compton effect D. None of these | | 2 | Compton was awarded Nobel prize in physics in | A. 1921
B. 1923
C. 1925
D. 1927 | | 3 | In the compton's effect, it is found that the wavelength of incident x-rays is | A. greater than the wavelength of scattered x-rays B. equal to the wavelength of scattered x-rays C. less than the wavelength of scattered x-rays D. any one of these | | 4 | Albert Einstein got the Nobel prize in physics for his explanation of photoelectric effect in | A. 1916
B. 1919
C. 1921
D. 1923 | | 5 | According to the electromagnetic wave theory of light, increasing the intensity of incident light should increase the | A. number of photoelectrons B. size of the photoelectrons C. charge on photoelectrons D. K.E of photoelectrons | | 6 | As the light shines on the metal surface, the electrons are ejected | A. slowly B. instantaneously C. either of these D. none of these | | 7 | The value of threshold frequency for different metals is | A. different B. same C. may be different or may be same D. none of these | | 8 | There is certain frequency below which no electrons are emitted from the metal surface, this frequency is known as | A. maximum frequency B. minimum frequency C. threshold frequency D. all of these | | 9 | The photoelectric effect, the maximum energy of photoelectrons depends on the | A. particular metal surface B. frequency of incident light C. both of them D. none of them | | 10 | When monochromatic light is allowed to fall on cathode, it begins to emit electrons, these electrons are called | A. thermoionic electrons B. free electrons C. photoelectrons D. slow electrons | | 11 | The emission of electrons from a metal surface when exposed to light of suitable frequency is called the | A. pair production B. Compton effect C. photoelectric effect D. relativity | | 12 | Electromagnetic radiation or photons interact with matter in | A. two distinct ways B. three distinct ways C. four distinct ways D. five distinct ways | | 13 | The whole shape of the black body spectrum for all wavelengths was explained by the formula proposed by | A. Max plank B. Newton C. Einstein D. J.J. Thomson | | 14 | The analysis of the distribution of wavelengths of the radiation emitted from a hot body set the foundation of new mechanics, known as | A. classical mechanics B. Newtonian mechanics C. quantum mechanics D. statistical mechanics | | | | A. 100 ev | A. 100 ev | | 15 | The energy of a photon in a beam of infrared radiation of wavelength 1240 nm is | B. 10 ⁶ e v
C. 10 ³ e v
D. 1.0 e v | |---|----|--|--| | | 16 | The photon of radio-waves has energy of about | A. 1 Me V B. 1 Ke v C. 10 ⁻¹⁰ e v D. 10 ^{>10} e v | | | 17 | From the theory of relativity, momentum p of the photon is related to energy as | A. p = hfc
B. p = hf/c
C. p = f(hc,f)
D. p = cf/h | | | 18 | Max plank received the Nobel Prize in physics for his discovery of energy quanta in | A. 1900
B. 1906
C. 1912
D. 1918 | | | 19 | In photoelectric effect the energy of ejected electrons depend on | A. The frequency B. The intensity C. Both frequency and intensity D. None of these | | | 20 | The value of the plank's constant 'h' is given by | A. 1.6 x 10 ⁻¹⁹ J B. 1.67 x 10 ⁻²⁷ Kg C. 6.63 x 10 ³⁴ Js D. 6.63 x 10 ⁻³⁴ Js | | ; | 21 | A photon is considered to have | A. Momentum B. Energy C. Wavelength D. All of the above | | | 22 | S.I. unit of planks constant is | A. J-s ⁻¹ B. J.s C. J.s ⁻² D. J.s ² | | | 23 | The energy of photon 'E' is proported to | A. The magnetic field H B. The electric field E C. Both the electric and magnetic field H and E D. Frequency | | : | 24 | The energy of a photon is represented by | A. h/c ² B. h/T C. hc ² D. hf/c ² | | : | 25 | According to the Max plank, energy is redialed or absorbed in | A. discrete packets B. continuous waves C. either of them D. none of these | | | 26 | Max plank founded a mathematical model resulting in an equation that describes the shape of observed black body radiation curves exactly, in | A. 1890
B. 1895
C. 1900
D. 1905 | | ; | 27 | The value of the Stephen's constant for black body radiations is given by | A. 5.6 x 10 ⁸ Wm ² K ⁴ B. 5.67 x 10 ⁸ Wm ² K ⁴ C. 2.9 x 10 ³ mK D. 2.9 x 10 ³ mK | | ; | 28 | The Stephen-Boltzmann law for the black body radiation is given by | A. E = T ² B. E = -T ² C. E = T ⁴ D. E = -T ⁴ | | : | 29 | The inside cavity of the black body is | A. painted white B. painted silver C. blackened with soot D. painted red | | ; | 30 | A black body is | A. an ideal absorber B. an ideal radiator C. both of them D. none of them | | | | | |