

## ECAT Pre General Science Mathematics Online Test

| Sr | Questions                                                                                           | Answers Choice                                                                 |
|----|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 1  | An expression involving any of the symbols <,>,≤ or ≥ is called                                     | A. equation B. inequality C. linear equation D. identity                       |
| 2  | Question Image                                                                                      | A. 360° B. 180° C. 90° D. None of these                                        |
| 3  | 3x + 4 = 0 is                                                                                       | A. not inequality B. equation C. identity D. inequality                        |
| 4  | $3x + 4 \le 0$ is                                                                                   | A. not inequality B. equation C. identity D. inequality                        |
| 5  | 3x + 4 < 0 is                                                                                       | A. inequality B. equation C. identity D. not inequality                        |
| 6  | $3x + 4 \ge 0$ is                                                                                   | A. equation B. inequality C. identity D. none of these                         |
| 7  | 3x + 4 > 0 is                                                                                       | A. equation B. identity C. inequality D. none of these                         |
| 8  | The expansion of (1 - 3x) <sup>-1</sup> is valid if                                                 | A.   x   < 1 B.   x   < 3 C.   x   < 1/3 D. None of these                      |
| 9  | The expansion of $(1 + 2x)^{-2}$ is valled if                                                       | A.   x   < 1/2<br>B.   x   < 1<br>C.   x   < 2<br>D.   x   < 3                 |
| 10 | If $ x  < 1$ , then the first two terms of $(1 - x)^{1/2}$ are                                      |                                                                                |
| 11 | Question Image                                                                                      | A. 8<br>B. 9<br>C. 10<br>D. 11                                                 |
| 12 | If n is not natural number, then the expansion $(1 + x)^{n}$ is valid for                           |                                                                                |
| 13 | The sum of the even coefficients in the expansion $(1 + x)^{n}$ is                                  | A. n <sup>2</sup> B. 2 <sup>n-2</sup> C. 2 <sup>n-1</sup> D. 2 <sup>n</sup>    |
| 14 | If $A(x_1,y_1)$ , $B(x_2,y_2)$ and $C(x_3,y_3)$ are the vertices of a triangle then its centroid is |                                                                                |
| 15 | If the exponent in the binomial expansion is 6, then the middle term is                             | A. 2nd term B. 3rd term C. 4th term D. 5th term                                |
| 16 | The number of terms in the expansion of $(a + x)^{12}$ is                                           | A. 13<br>B. 12<br>C. 11<br>D. 10                                               |
|    |                                                                                                     | A. 1 + 3x + 3x <sup>2</sup> +<br>x <sup>3</sup><br>B. 1 + x + x <sup>2</sup> + |

| 17 | $(1 - x)^3 = $                                                                                                                                                                                     | x <sup>3</sup> C. 1 - x + x <sup>2</sup> - x <sup>3</sup> D. 1 - 3x + 3x <sup>2</sup> - x <sup>3</sup>                                                                                                                                                                                                                                 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18 | The point of concurrency of the right bisectors of the sides of a triangle is called                                                                                                               | A. incentre B. circum center C. e-center D. centroid                                                                                                                                                                                                                                                                                   |
| 19 | $(1 + 2x)^4 =$                                                                                                                                                                                     | A. 1 + 4x + 6x <sup>2</sup> + 4x <sup>3</sup> + x <sup>4</sup> B. 1 - 4x + 6x <sup>2</sup> - 4x <sup>3</sup> + x <sup>4</sup> C. 1 - 8x + 24x <sup>2</sup> - 32x <sup>3</sup> + 16x <sup>4</sup> D. 1 + 8x + 24x <sup>2</sup> + 32x <sup>3</sup> + 16x <sup>4</sup> D. 1 + 8x + 24x <sup>2</sup> + 32x <sup>3</sup> + 16x <sup>4</sup> |
| 20 | The point of concurrency of the angle bisectors of a triangle is called                                                                                                                            | A. incentre B. circumcentre C. e-centre D. centroid                                                                                                                                                                                                                                                                                    |
| 21 | If n is any positive integer then $2^{n}>2(n+1)$ is true for all                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        |
| 22 | The point of concurrency of the medians of a triangle is called                                                                                                                                    | A. incentre B. circumcentre C. e-centre D. centroid                                                                                                                                                                                                                                                                                    |
| 23 | The point which divides the line segment joining the points (a, b) and (c, d) in the ratio $2:3$ internally is                                                                                     | D. none of these                                                                                                                                                                                                                                                                                                                       |
| 24 | The centroid of a triangle divides each median in the ratio                                                                                                                                        | A. 2:1<br>B. 3:1<br>C. 3:2<br>D. 1:1                                                                                                                                                                                                                                                                                                   |
| 25 | If n is any positive integer then 4 <sup>n</sup> >3 <sup>n</sup> + 4 is true for all                                                                                                               |                                                                                                                                                                                                                                                                                                                                        |
| 26 | The coordinates of the point that divides the join of A(-6,3) and B(5, -2) in the ratio 2:3 externally are                                                                                         |                                                                                                                                                                                                                                                                                                                                        |
| 27 | If n is any positive integer then 3 + 6 + 9 ++ 3n =                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                        |
| 28 | The coordinates of the point that divides the join of A(-6,3) and B(5, -2) in the ratio $2:3$ internally                                                                                           |                                                                                                                                                                                                                                                                                                                                        |
| 29 | If a statement $S(n)$ is true for $n=i$ where $i$ is some natural number and the truth of $S(n)$ for $n=k>i$ implies the truth of $S(n)$ for $n=k+1$ then $S(n)$ is true for all positive integers |                                                                                                                                                                                                                                                                                                                                        |
| 30 | If (2, 3) is the mid point of (a, 3) and (5, b) then                                                                                                                                               | A. a = 1, b = -3<br>B. a = -1, b = 3<br>C. a = 1, b = 3<br>D. a = -1, b = -3                                                                                                                                                                                                                                                           |
|    |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                        |