ECAT Pre Engineering Entry Test | Sr | Questions | Answers Choice | |----|--|--| | 1 | If origin is the mid point of (a, -3) and (-5, b) then | A. a = -5, b = -3
B. a = 5, b = 3
C. a = -5, b = 3
D. a = 5, b = -3 | | 2 | The middle term in the expansion of $(a + x)^{12}$ is | A. 7th
B. 8th
C. 9th
D. 6th | | 3 | The sum of the coefficient in the expansion of $(a + x)^5$ is | A. 32
B. 16
C. 8
D. 5 | | 4 | The sum of the odd coefficients in the expansion of $(a + x)^4$ is | A. 14
B. 12
C. 8
D. 4 | | 5 | If origin is the mid point of (a,3) and (5,b) then | A. a = -5, b = -3
B. a = 5, b = 3
C. a = -5, b = 3
D. a = 5, b = -3 | | 6 | The sum of even coefficient in the binomial expansion is | A. 2 ⁿ⁺¹ B. 2 ⁿ C. 2 ⁿ⁻¹ D. 2n | | 7 | If n is odd then the middle terms in the expansion of $(a + x)^n$ are | | | 8 | Question Image | A. a
B. 2a
C. 3a
D. 4a | | 9 | Question Image | A. 1
B. 2
C1
D. 0 | | 10 | In the expansion of $(a + x)^n$ the sum of exponents of a and x in each term of the expansion is | A. n + 1
B. n - 1
C. n
D. 2n | | 11 | The mid point of the line segment joining the points (a,b) and (b,a) is | | | 12 | The number of terms in the expansion of $(a + b)^9$ is | A. 10
B. 11
C. 9
D. 12 | | 13 | If the exponent in the binomial expansion is 6, then the middle term is | A. 2nd
B. 3rd
C. 4th
D. 5th | | 14 | The mid point of the line segment joining the points (3,-1) and (-3,1) is | A. (3,-1)
B. (0,0)
C. (2,2)
D. (4,4) | | 15 | The first three terms in the expansion of $(1 - x)^{-3}$ are | A. 1 + 3x + 6x ² B. 1 - 3x + 6x ² C3 - 3x - 6x ² D. 1 - 3x - 6x ² | | 16 | The mid point of the line segment joining the points (4,0) and (0,4) is | A. (4,4)
B. (2,2)
C. (-4,-4)
D. (-2,-2) | | | | | | 17 | The first three terms in the expansion of $(1 - x)^{-2}$ are | A. 1 - 2x + 3x ² B. 1 - 2x - 3x ² C. 1 + 2x + 3x ² D2 - 2x + 3x ² | |----|--|---| | 18 | The mid point of the line segment joining the points A(-8,3) and B(2,-1) is | A. (-3,1)
B. (-6,2)
C. (5,2)
D. (-5,2) | | 19 | The mid point of the line segment joining the points A(3,1) and B(-2,-4) is | A. (1, -3) | | 20 | The first three terms in the expansion of $(1 - x)^{-1}$ are | A. 1 + x + x ² B. 1 - x - x ² C1 -x +x ² D. 1 - x + x ² | | 21 | The first three terms in the expansion of $(1 + x)^3$ are | A. 1 + 3x +6x ² B. 1- 3x + 6x ² C3 -3x -6x ² D. 1- 3x -6x ² | | 22 | The first three terms in the expansion of (1 + x) ⁻² are | A. 1 - 2x + 3x ² B. 1 - 2x - 3x ² C. 1 + 2x + 3x ² D2 -2x + 3x ² | | 23 | The distance between the points A(-8,3) and B(2,-1) is | B. 116
D. none of these | | 24 | The first three terms in the expansion of $(1 + x)^{-1}$ are | A. 1 + x + x ² B. 1 - x - x ² C1 -x + x ² D. 1 - x + x ² | | 25 | The distance between the points A(3,1) and B(-2,-4) is | A. 5
C. 25
D. 10 | | 26 | The sum of coefficients in the binomial expansion equals to | A. 2 B. 2 ⁿ⁺¹ C. 2 ⁿ⁻¹ D. 2 ⁿ | | 27 | Question Image | A. Even B. Odd C. Prime D. None of these | | 28 | The mid point of the line joining the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is | | | 29 | Question Image | A. 2
B. 7
C. 8
D. 12 | | 30 | The point R dividing externally the line joining the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ in the k_1 : k_2 has the coordinates | ne ratio |