

## ECAT Physics Online Test

| Sr | Questions                                                                                                              | Answers Choice                                                                                                                                               |
|----|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | The force experienced by an electron projected in a magnetic field B with a velocity V is given by                     | A. F=e(V x B) B. F= -e(V x B) C. F= e(B x V) D. Both a and c                                                                                                 |
| 2  | The force experienced by a single charge carrier moving with velocity 'v' i magnetic field of strength 'B' is given by | A. F =q(v/B) B. F=q <sup>2</sup> (v x B) C. F=q(v x B) D. F= vx B                                                                                            |
| 3  | When current passes through a solenoid coil, it behaves like a                                                         | A. loop B. circle C. bar magnet D. none of these                                                                                                             |
| 4  | The strength of magnetic field around the current conductor is                                                         | A. Smaller near the conductor B. Greater near the conductor C. Greater at the large distance from the conductor D. Constant near and away from the conductor |
| 5  | The magnetic field outside the solenoid due to current is                                                              | A. strong B. zero C. weak D. uniform                                                                                                                         |
| 6  | Which one of the following relations is correct?                                                                       | A. 1 Wb-m <sup>2</sup> = Nm <sup>-<br/>1</sup> A <sup>-1</sup><br>B. 1 tesla = 104 gausses<br>C. 1 Wb-m <sup>2</sup> = 1 tesla<br>D. All of the above        |
| 7  | The magnetic field in the middle of a solenoid due to current is                                                       | A. weak B. strong and uniform C. none-uniform D. zero                                                                                                        |
| 8  | The SI unit of magnetic permeability is                                                                                | A. WB A <sup>-1</sup> m <sup>-1</sup> B. WB mA <sup>-1</sup> C. WB Am <sup>-1</sup> D. None of these                                                         |
| 9  | Tesla is the unit of                                                                                                   | A. Magnetic induction or flux density B. Magnetic flux C. Self inductance D. None of these                                                                   |
| 10 | The SI unit of flux density is.                                                                                        | A. Tesla B. Weber C. Gaun D. Weber/meter                                                                                                                     |
| 11 | The unit of flux density is also given by                                                                              | A. Weber/m <sup>2</sup> or Wb . m <sup>-2</sup> B. Weber/mor Wb . m C. Weber/mor Wb . m <sup>-1</sup> D. Weber or Wb                                         |
| 12 | The SI unit of flux density is                                                                                         | A. Newton/Amp-meter B. Newton-m/Ampere C. Newton-m/Amp <sup>2</sup> D. Newton-Amp/meter                                                                      |
| 13 | The straight current carrying conductor experiences maximum force in a uniform magnetic field when it is placed        | A. parallel to the field  B. Perpendicular to the field C. At an angle of 45 to the field D. None of the above                                               |
| 14 | The SI unit of magnetic flux is.                                                                                       | A. weber B. Nm <sup>-1</sup> A <sup>-1</sup> C. tesla D. gauss                                                                                               |

| 15 | The total number of lines of magnetic induction pasing through a surface perpendicular to the magnetic field is called                                   | A. magnetic flux B. magnetic flux density C. magnetic induction D. magnetic field intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16 | The unit of magnetic flux is                                                                                                                             | A. Weber-m <sup>2</sup> B. Weber-m <sup>3</sup> C. Henry D. Weber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 17 | Weber is a unit of                                                                                                                                       | A. magnetic flux B. magnetic filed intensity C. magnetic induction D. magnetic flux density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 18 | Magnetic flux and flux density are related by                                                                                                            | A. Flux density = flux x area B. Flux density = flux / area C. Flux density = flux - area D. None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 19 | The SI unit of magnetic flux is                                                                                                                          | A. NmA <sup>-2</sup> B. NmA <sup>-1</sup> C. NAm <sup>-1</sup> D. Nm <sup>2</sup> A <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20 | If current through conductor is 1 A and length of conductor is 1m placed at right angle to the magnetic field, then the strength of magnetic field is    | A. F = B <sup>2</sup> B. F = 0 C. F = B D. F = B/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 21 | The force exerted on a conductor of length L, carrying current I when placed in a magnetic field B is given by                                           | A. F=IB/L<br>B. F= L x B/I<br>C. F = IL x B<br>D. F = IL . B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22 | The SI unit of magnetic induction is                                                                                                                     | A. Gauses B. Tesla C. Weber D. Weber <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 23 | A relationship between Gauses of magnetic induction and Tesla(T) is given by                                                                             | A. G 10 <sup>-3</sup> T B. G = 10 <sup>-2</sup> T C. G = 10 <sup>-4</sup> T D. G = 10 <sup>-1</sup> T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24 | A meter wire carraying a current of 2A is at right angle to the uniform magnetic field of 0.5 Weber/m <sup>2</sup> The force on the wire is              | A. 5N<br>B. 4N<br>C. 1.5N<br>D. 6N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 25 | The SI unit of magnetic induction is tesla which is equal to                                                                                             | A. Newton/ampere-meter or N/A-m B. Newton/ampere <sup>2</sup> - meter or N/A <sup>2</sup> - meter or N/A <sup>2</sup> - meter <sup>2</sup> - meter <sup>2</sup> - N/A <sup>2</sup> - N/A <sup>2</sup> - D. Newton/ampere <sup>2</sup> - meter <sup>2</sup> - N/A <sup>2</sup> - sup>2- N/A <sup>2</sup> - N/A |
| 26 | The force acting as one meter length of the conductor placed at right angle to the magnetic field, when one A current is passing through it, defines the | A. magnetic flux B. magnetic induction C. magnetic field D. self inductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 27 | Gauss(G) is smaller unit of magnetic induction which is related to tesla(T) as                                                                           | A. IT = 10 <sup>-4 </sup> G B. IT = 10 <sup>5</sup> G C. IT = 10 <sup>3</sup> G D. IT = 10 <sup>4</sup> G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 28 | The force acting on a charge moving in a magnetic field                                                                                                  | A. is perpendicular to the both magnetic field and direction of motion B. is proportional to the magnetic of charges C. vanishes when the motion is directly opposite to the direction of field D. all of the above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 29 | 'K' is the proportionality constant of force experienced by conductor. What is the value of 'K' in SI units?                                             | A. 0<br>B. 1<br>C. 0.5<br>D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 30 | A current carrying conductor is placed at right angle to the magnetic field. The magnetic force experienced by the conductor is                          | A. minimum B. maximum C. zero D. none of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

D. 110110 01 111000