

ECAT Physics Chapter 14 Electromagnetism Online Test

Sr	Questions	Answers Choice
1	The SI unit of flux density is.	A. Tesla B. Weber C. Gaun D. Weber/meter
2	The unit of flux density is also given by	A. Weber/m ² or Wb . m ⁻² B. Weber/mor Wb . m C. Weber/mor Wb . m ⁻¹ D. Weber or Wb
3	The SI unit of flux density is	A. Newton/Amp-meter B. Newton-m/Ampere C. Newton-m/Amp ² D. Newton-Amp/meter
4	The straight current carrying conductor experiences maximum force in a uniform magnetic field when it is placed	A. parallel to the field B. Perpendicular to the field C. At an angle of 45 to the field D. None of the above
5	The SI unit of magnetic flux is.	A. weber B. Nm ⁻¹ A ⁻¹ C. tesla D. gauss
6	The total number of lines of magnetic induction pasing through a surface perpendicular to the magnetic field is called	A. magnetic flux B. magnetic flux density C. magnetic induction D. magnetic field intensity
7	The unit of magnetic flux is	A. Weber-m ² B. Weber-m ³ C. Henry D. Weber
8	Weber is a unit of	A. magnetic flux B. magnetic filed intensity C. magnetic induction D. magnetic flux density
9	Magnetic flux and flux density are related by	A. Flux density = flux x area B. Flux density = flux / area C. Flux density = flux - area D. None of these
10	The SI unit of magnetic flux is	A. NmA ⁻² B. NmA ⁻¹ C. NAm ⁻¹ D. Nm ² A ⁻¹
11	If current through conductor is 1 A and length of conductor is 1m placed at right angle to the magnetic field, then the strength of magnetic field is	A. F = B ² B. F = 0 C. F = B D. F = B/2
12	The force exerted on a conductor of length L, carrying current I when placed in a magnetic field B is given by	A. F=IB/L B. F= L x B/I C. F = IL x B D. F = IL . B
13	The SI unit of magnetic induction is	A. Gauses B. Tesla C. Weber D. Weber ²
14	A relationship between Gauses of magnetic induction and Tesla(T) is given by	A. G 10 ⁻³ T B. G = 10 ⁻² T C. G = 10 ⁻⁴ T D. G = 10 ⁻¹ T
15	A meter wire carraying a current of 2A is at right angle to the uniform magnetic field of 0.5 2 Weber/m 2 The force on the wire is	A. 5N B. 4N C. 1.5N