ECAT Mathematics Chapter 8 Sequences and Series Online Test | _ | | | |----|---|--| | Sr | Questions | Answers Choice | | 1 | The number of divisors of 1029, 1547 and 122 are in | A. A.P. B. G.P. C. H.P. D. None of these | | 2 | Let the sequence 1, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, where n consecutive terms have the value n, then 1025th term is | A. 2 ⁹ B. 2 ¹⁰ C. 2 ¹¹ D. 2 ⁸ | | 3 | An A.P., a G.P. and a H.P. have the same first and last terms and the same odd numbers of terms, the middle terms of the three series are in | A. A.P. B. G.P. C. H.P. D. None of these | | 4 | Question Image | | | 5 | Question Image | A. 1/2
B. 2
C. 1/4
D. 4 | | 6 | The sum of the squares of three distinct real numbers, which are in G.P., is S^2 . if their sum is αS then | | | 7 | Question Image | | | 8 | The third term of a G.P. is the square of first term. If the second term is 8, then the 6th term is | A. 120
B. 124
C. 128
D. 132 | | 9 | Three consecutive terms of a progression are 30, 24, 20. The next terms of the progression is | | | 10 | If b_1 , b_2 , b_3 , are in G.P. with first term unity and common ratio r, then the minimum value of b_1 - b_3 + b_5 is equal to | A. 3/4 B. 1/4 C. 1 D. None of these | | 11 | The 10th common term between the series 3+7+11+ and 1 + 6 +11 + is | A. 191
B. 193
C. 211
D. None of these | | 12 | Let a_1 , a_2 , a_3 , a_4 and a_5 be such that a_1 , a_2 , and a_3 are in A.P., a_2 , a_3 and a_4 are in G.P and a_3 , a_4 and a_5 are in H.P. Then, a_1 , a_3 and a_5 are in | A. G.P. B. A.P. C. H.P. D. None of these | | 13 | If three unequal numbers p, q, r are in H.P. and their squares are in A.P., then the ration p : q : r is | | | 14 | The consecutive terms of a progressions are 30, 24, 20. The next term of the progression is | | | 15 | Every term of a G.P. is positive and also every term is the sum of two preceding terms. Then the common ratio of the G.P. is | | | 16 | Question Image | A. 2 ⁻² - n - 1 B. 1 - 2 ⁻ⁿ C. n + 2 ⁻ⁿ -1 D. 2 ⁿ -1 | | 17 | If a, b, c are in AP., a, b, c are in G.P. then A, m ² b, c are in | A. A.P.
B. G.P.
C. H.P.
D. None of these | | 18 | If a ₁ = a ₂ = 2, a _n = a _{n-1} - 1 (n > 2), then a ₅ is | A. 1
B. 0
C1
D2 | | | | | . | | pth term of an H.P. is qr and qth term is pr then the rth term of the H.P. is | B. 1
C. pq
D. pqr ² | |----|---|--| | 20 | If the pth, qth, and rth terms of an A.P. are in G.P:., then the common ratio of the G.P. is | | | 21 | Question Image | A. 1
B. 2
C. 3/2
D. 5/2 | | 22 | Question Image | | | 23 | If P, Q, R be the A.M., G.M., H.M. respectively between any two rational numbers a and b, then P - Q is | | | 24 | 99th term of the series 2 + 7 + 14 + 23 + 34 + is | A. 9998
B. 9999
C. 10000
D. None of these | | 25 | Question Image | A. A.P. B. G.P. C. H.P. D. None of these | | 26 | Question Image | A. 12
B. 13
C. 14
D. 15 | | 27 | Question Image | A. 15/23
B. 7/15
C. 7/8
D. 15/7 | | 28 | If x, y, z are the pth, qth, rth terms of an A.P. and also of G.P., then x ^{y-z} . y ^{z-x} . z ^{x-y} eqals | A. xyz B. 0 C. 1 D. None of these | | 29 | Let S_n denote the sum of the first n terms of an A.P. If S_{2n} = 3 S_n : S_n is equal to | A. 4
B. 6
C. 8
D. 10 | | 30 | If p, q, r and in A.P., a is G.M. between p and q and b is G.M. between q and r, then a^2 , q^2 , b^2 are in | A. A.P. B. G.P. C. H.P. D. None of these |