ECAT Mathematics Chapter 6 Quadratic Equations Online Test | Sr | Questions | Answers Choice | |----|--|---| | 1 | If the roots of ax^2 + bx + c =0 are equal in magnitude but opposite in sign, then | A. a = 0
B. b = 0
C. c = 0
D. None of these | | 2 | Question Image | A. b = c
B. a = c
C. a = c
D. b = 0 | | 3 | The quadratic equation 8 $\sec^2 \theta$ - 6 $\sec \theta$ +1 = 0 has | A. Infinitely many roots B. Exactly two roots C. Exactly four roots D. No roots | | 4 | If $a > 0$, $b > 0$, $c > 0$, then the roots of the equation $ax^2 + bx + c = 0$ are | A. Real and negativeB. Non-real with negative real partsC. Real and positiveD. Nothing can be said | | 5 | If one root of the equation ix^2 - 2(i + 1) x +(2 - i) = 0 is 2 - i, then the other root is | Ai
B. 2 + i
C. i
D. 2 - i | | 6 | If the roots of $ax^2 + b = 0$ are real and distinct then | A. ab > 0
B. a = 0
C. ab < 0
D. a > 0, b > 0 | | 7 | If ax^2 + bx + x = 0 is satisfied by every value of x, then | A. b = 0, c = 0
B. c = 0
C. b = 0
D. a = b = c = 0 | | 8 | Both the roots of the equation $(x - b)(x - c) + (x - c)(x - a) + (x - a)(x - b) = 0$ are always | A. Positive B. Negative C. Real D. None of these | | 9 | Question Image | | | 10 | Question Image | | | 11 | The condition for polynomial equation $ax^2 + bx + c = 0$ to be quadratic is | | | 12 | Question Image | | | 13 | Question Image | A. 4
B. 6
C. 8
D. 10 | | 14 | Question Image | A. 2
B. 4
C. 8
D. 16 | | 15 | Question Image | A. 0
B. 1
C. 2
D. 3 | | 16 | The cube roots of 8 are | | | 17 | Question Image | A. 1
B1
C. 5
D. 2 | | 18 | Question Image | A -1
B. 0
C. 2 | | | | 5. 1 | |----|---|---| | 9 | Question Image | | | 0 | Question Image | | | 1 | Question Image | | | 2 | Question Image | A. 0 B. 1 C. 2 D. None of these | | 23 | Which of the following is a factor of x^3 - $3x^2$ + $2x$ - 6 | A. x + 2
B. x + 3
C. x - 3
D. x - 4 | | 24 | Find a if 1 is a root of the equation x^2 + ax + 2 = 0 | A. 3
B3
C. 2
D. 0 | | 25 | If x - 2 is a factor of ax2- 12x + a = 2a, then a = | A5
B. 5
C. 0
D. 1 | | 26 | If x^2 - 7x + a has remainder 1 when divided by x + 1, then a = | A7
B. 7
C. 0
D. None of these | | 27 | Two quadratic equation in which xy term is missing and the coefficients of x^2 and y^2 are equal, give a linear equation by | A. Addition B. Subtraction C. Multiplication D. Division | | 28 | The polynomial x - a is a factor of the polynomial $f(x)$ if and only if | A. $f(a)$ is positive
B. $f(a)$ is negative
C. $f(a) = 0$
D. None of these | | 29 | The product of the four fourth roots of unity is | A. 0
B. 1
C1
D. None of these | | 30 | Question Image | |