

Mathematics ECAT Pre Engineering Chapter 6 Quadratic Equations Online Test

Sr	Questions	Answers Choice
1	If x^3 + ax^2 - a^2x - a^3 is divided by x + a, then the remainder is	A. 0 B. a ³ C. 2a ³ D2a ³
2	If a polynomial $P(x)$ is divided by x - a, then the remainder is	A. P(o) B. P(-a) C. P(a) D. None of these
3	The quadratic formula is	
4	The solution set of x^2 - 5x + 6 = 0 is	A. {1, 3} B. {2, 3} C. {1, 2} D. None of these
5	5x ³ + 3x - is a	A. Polynomial of degree 3 B. Polynomial of degree 2 C. Polynomial of degree 1 D. Polynomial of degree 0
6	Question Image	A. Polynomial of degree 0B. Polynomial of degree 2C. Quadratic equationD. None of these
7	Question Image	A. Linear equationB. Quadratic equationC. Cubic equationD. None of these
8	Question Image	A. Polynomial of degree 0B. Polynomial of degree 1C. Polynomial of degree 2D. Polynomial of degree n
9	w ¹¹ =	A. 0 B. 1 C. w D. w ²
10	w ⁻¹² =	A. 0 B. 1 C. w D. w ²
11	w ⁴ =	A. 0 B. 1 C. w D. w ²
12	w ⁻¹ =	A. 0 B. 1 C. w D. w ²
13	w ¹⁵ =	A. 0 B. 1 C. w D. w ²
14	x^{4} - $3x^{3}$ + $3x$ + 1 = 0 is called	A. Reciprocal equation B. Exponential equation C. Radical equation D. None of these
15	Question Image	A. Reciprocal equation B. Exponential equation C. Radical equation D. None of these
16	4 ^{1+x} + 4 ^{1-x} = 10 is called	A. Reciprocal equation B. Exponential equation C. Radical equation

		D. None of these
17	Roots of the equation x^2 - x = 2 are	A. {2, -1} B. {1, 0} C. {2, 1} D. {-2, 1}
18	Roots of the equation x^2 + 7x + 12 = 0 are	A. {3, -4} B. {-3, 4} C. {3, 4} D. {-3, -4}
19	Roots of the equation x^2 - 7x + 10 = 0 are	A. {2, 5} B. {-2, 5} C. {2,5} D. {-2,-5}
20	If a > 0,b > 0, c > 0 then the roots of the equation $ax^{2+}bx + c = 0$ are	A. Real and negative B. Non-real with negative real parts C. Real and positive D. Nothing can be said
21	if one root of the equation ix2 - 2(i + 1) x +(2 - i)= 0 is 2 - i then the other root is	Ai B. 2 + i C. i D. 2 - i
22	If the roots of $ax^2 + b = 0$ are real and distinct then	A. ab > 0 B. a = 0 C. ab < 0 D. a > 0,b > 0
23	If $ax + bx + c = 0$ is satisfied by every value of x,then	A. $b = 0, c = 0$ B. $c = 0$ C. $b = 0$ D. $a = b = c = 0$
24	Both the roots of the equation $(x - b) (x - c) + (x - c) (x - a) + (x - a) (x - b) = 0$ are always	A. Positive B. Negative C. Real D. None of these
25	The roots of $(x - a)(x - b) = ab x^2$ are always	A. Real B. Depends upon a C. Depends upon b D. Depends upon a and b
26	lfα,β are non-real roots of ax2 + bx +c =0 (a,b,c∈ Q),then	A. $\alpha = \beta$ B. $\alpha\beta = 1$ C. $\alpha = \beta$ D. $\alpha = 1$
27	Only one of the root of $ax^2 + bx + c = 0$, $a \neq 0$ is zero if	A. $c = 0$ B. $c = 0, b \neq 0$ C. $b = 0, c = 0$ D. $b = 0, c \neq 0$
28	The condition for polynomial equation $ax^2 + bx + c = 0$ to be quadratic is	A. a > 0 B. a < 0 C. a≠ 0 D. a≠ 0,b ≠ 0
29	The graph of a quadratic function is	A. Circle B. Ellipse C. Parabola D. Hexagon
30	The roots of px2 - (p-q)x-q=0 are	A. equal B. Irrational C. Rational D. Imaginary