ECAT Computer Science Entry Test | C | Ougations | Angunya Chaica | |----|--|--| | Sr | Questions | Answers Choice | | 1 | The slope of the tangent of the circle $x^3 + y^3 = 25$ at (4,3) is: | A4/5
B. 4/3
C25/4
D. 25/3 | | 2 | The points of intersection of the line $y = 2x - 3$ and the circle $x^2 + y^2 - 3x = 2y - 3 = 0$ are: | A. two B. three C. less thean two D. not intersect | | 3 | If one end of the diameter of the circle $x^2 + y^2$ - $5x = 3y - 22 = 0$ is $(3,4)$ the other end is: | A. (2,7)
B. (-2,-7)
C. (-2,7)
D. (2,-7) | | 4 | If one end of the diameter of the circle $2x^2 + 2y^2 - 8x - 4y = 2 = 0$ is (2,3), the other end is: | A. (2,1)
B. (-2,1)
C. (2,-1)
D. (1,-1) | | 5 | Two circle $x^2 + y^2 + 2x - 8 = 0$ and $x^2 + y^2 - 6 + 6x - 46 = 0$: | A. touch internally B. do not intersect C. touch externally D. None of these | | 6 | Circle $x^2 + y^2 - 2y - y = 0$ and $x^2 + y^2 - 8y - 4 = 0$: | A. Interesect B. touch externally C. touch internally D. do not touch | | 7 | The point of contact of the circles $x^2 + y^2 - 6x - 6y + 10 = 0$ and $x^2 + y^2 = 2$ is | A. (-3,2)
B. (1,3)
C. (-2,-1)
D. None of these | | 8 | The radius of the circle $x^2 + y^2 - 6x + 4y + 13 = 0$, is | A. 1 B. 2 C. 0 D. None of these | | 9 | The are of the circle centred at (1 , 2) and passing through (4 , 6) is: | A. 10π
B. 25π
C. 5π
D. 25/2π | | 10 | The equation $x^2 + y^2 + 2g + 2fy + c = 0$ represents a circle whose centre is : | A. (g,f)
B. (-g,-f)
C. (2g,2f)
D. (-2f,-2g) | | 11 | The radius of the circle $2x^2 + 2y^2 - 4x + 12$ y+11=0 is: | A. √4.5
B. √11
C. √29
D. √15 | | 12 | Parametric equation of circle : $x^2+y^2+r^2$, are | A. r1 = x cos r < sup > 2 < / sup > = y sin B. x = r cos y = r sin C. x = r sin 1 y = r sin 2 D. x = r < sub > 1 < / > / sub > cos y = r < sub > 2 sin < / sub > | | 13 | The general equation of circle $x^3 + y^3 + 2gx + 2fy + c = 0$, contains: | A. Three independent variables B. Two independent conntants C. Three indepentent parameters D. Three independent constants | | 14 | The three noncollinear points through which a circle passe are known, then we can find the: | A. Variables x and y B. Value of x and c C. three constants f,g and c D. inverse of the circle | | 15 | A second degree equation in which coefficients of x^2 and y^2 are equal and there is no product therm xy represents: | A. a parabola B. a circle C. an ellipse | | | | D. a pair of lines | |----|--|--| | 16 | Apollonius was a: | A. Rocket B. Muslims scientist C. Greek mathematicians D. Method of finding conics | | 17 | The study conics, pappus used the method of: | A. analytic geometry Euclidean B. solid geometry C. Greek mathmaticians D. None of these | | 18 | The familiar plane curves, namely circle, ellipse, parabola and hyperbola are called: | A. cones B. conics C. nappes D. apex | | 19 | If the cutting plane is parallel to the axis of the cone and intersects both of its nappes, then the curve of intersection is: | A. an ellipse B. a circle C. a parabols D. a hyperbola | | 20 | The exact value of $\cos^{-1}(-1) + \cos^{-1}(1) =$ | A. π
Bπ
C. π/2
D. π/3 | | 21 | The exact value of cos-1 (0) is | A. π/2
Bπ/2
C. 3π
D. π-π/6 | | 22 | Cos ⁻¹ 12/13 = | A. tan ⁻¹ 3/5 B. cot ⁻¹ 13/12 C. Sec ⁻¹ 13/12 D. sin ⁻¹ 5/13 | | 23 | $\cos^{-1}(\cos x) =$ | A. x B. cos x C. x = 1/x D. cos ⁻² x | | 24 | Cos-1(x)= | A. cos x
B. x
C. tan-1(-x)
D. Sec-1 (1/x) | | 25 | Cos-1 (-x) = | Ax
B. 1/x
C. tan-1 x
D. π-cos-1 x | | 26 | lfπ≤x≤2π, then cos-1 (cos x)= | A. cos x
Bx
C. 1/x
Dx | | 27 | If $\cos (2 \sin -1 x) = 1/9$, then what is the value of x? | A. 1/3
B2/3
C. 2/3
D. 2/3 , -2/3 | | 28 | Cos (cos4π/3)= | A. π/2
B. π/3
C. 2π/3
Dπ/3 | | 29 | The exact degree value of the function sin-1(- $\sqrt{3}/2$) is | A. 70 ^o B. 50 ^o C. 90 ^o D. 60 ^o | | 30 | What is the value of cos (cos-1 2) ? | A. √2
B. 1/2
C. undefine
D. 0 | | | | |