ECAT Chemistry Online Test | Sr | Questions | Answers Choice | |----|--|---| | 1 | $ m K_{Sp}$ value for PbSO ₄ = 1.8 x 10 ⁻⁸ mole 2 dm $^{-6}$. The maximum concentration of Pb $^{++}$ ions is | A. 1.34 x 10 ⁻⁴ mole dm ⁻³ B. 1.8 x 10 ⁻⁴ C. 3.6 x 10 ⁻¹⁶ mole dm ⁻³ D. 1.0 x 10 ⁻⁸ mole dm ⁻³ | | 2 | The solubility product of AgCl is 2.0×10^{-10} mole 2 dm $^{-6}$. The maximum concentration of Ag $^+$ ions in the solution is | A. 2.0 x 10 ⁻¹⁰ mole dm ⁻³ B. 1.41 x 10 ⁻⁵ mole dm ⁻³ C. 1.0 x 10 ⁻¹⁰ D. 4.0 x 10 ⁻²⁰ mole dm ⁻³ | | 3 | Product of concentration of ions raised to the power equal to the co-efficient of ions in balanced equation for saturated solution of a salt is called | A. lonic product B. Equilibrium constant K _c C. K _w D. Solubility product (K _{sp}) | | 4 | Buffers having pH less than 7 are made | A. Mixture of weak acid + salt of it with strong base B. Mixture of weak acid + salt of it with weak base C. Mixture of weak base + salt of it with strong acid D. Mixture of weak base + salt of it with weak base | | 5 | The relation between Kc and Kp is | | | 6 | pH of the human blood which is essentially maintained constant due to carbonates, biocarbonates, phosphates etc., is | A. 7.00
B. 7.25
C. 7.35
D. 7.47 | | 7 | A buffer solution of 0.1 molar HCOOH and 0.1 molar HCCONa has pH = 3.78 To is 0.01 molar HCl is added, then pH of the buffer solution becomes | A. 2.78
B. 4.78
C. 3.78
D. 3.70 | | 8 | If pH of buffer of 1 mole dm^{-3} of HCOOH + 0.1 mole dm^{-3} HCOONa having pKa = 3.78 is | A. 1.78
B. 2.78
C. 3.78
D. 4.78 | | 9 | pH of 0.1 molar HCl solution is | A. 1
B. zero
C. 13
D. 14 | | 10 | A buffer of a 0.09 molar acetic acid and 0.11 molar sodium acetate has pH = 4.83 . If 0.01 mole NaOH in 1 dm ³ of the buffer solution is added, then pH of the buffer becomes | A. 4.74
B. 4.92
C. 5.0
D. 4.0 | | 11 | pH of water is 7, if 0.01 M NaOH is added, than its pH is | A. 12
B. 14
C. zero
D. 10 | | 12 | pH of 1 molar NaOH is | A. 7
B. zero
C. 14
D. 10 | | 13 | pKb value of NH4OH is 4.74. If the concentration of NH4OH is 1 molar containing 0.1 molar NH4Cl, then pH of this buffer will be | A. 3.74
B. 10.26
C. 4.74
D. 9.26 | | | | | . - -- | 14 | ph of the buffer CH ₃ COOh + CH ₃ COONa is 3.76. If the mixture contains 1 molar acetic acid and 0.1 molar sodium acetate, then pKa of this buffer is | A. 3./6
B. 4.76
C. 5.76
D. 6.76 | |----|---|---| | 15 | The best buffer is prepared when molar concentrations of the salt and acid are equal, then its pH and pKa value are related | A. pH = pKa
B. pH ⁢ pKa
C. pH > pKa
D. pH x pKa = 14 | | 16 | pH and pKa of the buffer are related by Henderson equation which is | | | 17 | K_b value of NH4OH is 1.81 x 10 ⁻⁵ and its conjugate acid has K_a = 5.7 x 10 ⁻¹⁰ pKb of the base is 4.74, pKa of its conjugate acid is | A4.74
B. 4.74
C. 10
D. 9.26 | | 18 | strength of an acid can be determined by | A. P ^{ka} B. P ^{ka} C. P ^{oH} D. P ^{kw} | | 19 | When fused PbBr2is electrolyed then | A. Bromine appears at cathode B. Lead deposited at the cathode C. Lead appears at the anode D. None of these happens | | 20 | An electrochemical cell is based upon | A. Acid-base reaction B. Redox reaction C. Nuclear reaction D. None of the above | | 21 | Sodium metal is obtained by the electrolysis of fused NaCl in cell is called | A. Nelson's cell B. Down's cell C. Daniell cell D. Voltaic cell | | 22 | Question Image | A1.10 V
B. +1.10 V
C0.42 V
D. +0.42 V | | 23 | Question Image | A. lodine can oxidise iron B. Bromine can oxidise iron C. lodine can oxidise bromine D. Iron can oxidise bromine | | 24 | Question Image | A. A strong reducing agent B. A strong oxidising agent C. Better oxidising agent than hydrogen D. Less reducing agent than hydrogen | | 25 | A standard hydrogen electrode (S.H.E) consists of a platinized platinum electrode dipped in 1 molar solution of H [†] ions and hydrogen gas is passed at a pressure of | A. One pascal B. One kilo pascal C. One atmoshpere D. Then atmoshpere | | 26 | Question Image | A. Adding H ₂ O and H ⁺ ions B. Adding OH ⁻ ions C. Adding O ² molecules D. Adding O atoms | | 27 | Corrosion reaction are | A. Spontaneous redox reaction B. Non-spontaneous acid-base reactions C. Spontaneous acid-base reactions D. None of these | | 28 | Standard reduction of $Zn = -0.76 \text{ V}$ and that of Ni is -0.25 V . On coupling them by a salt bridge which of these will act as anode | A. Salt bridge will act as anode B. Zn will act as anode C. Ni will act as anode D. None of these | | 29 | Zn does not displace Mg from MgSO ₄ solution because | A. Zn is more electropositive than Mg B. Zn is below Mg in electropositive series C. Zn is above Mg in electrochemical series D. Zn is trivalent Mg is divalent | | 30 | Fe can displace Cu form CuSO4solution because | A. Fe is ferromagnetic B. Fe is below Cu in electrochemical series C. Fe is above Cu in electrochemical series D. Fe exists in divalent oxidation state |