

ECAT Chemistry Online Test

0	Over-time-	Annual Obside
Sr	Questions	Answers Choice
1	Compound X has molecular formula C ₁₀ H ₁₄ O and is unreactive towards mild oxidising agents. What is the structure of the compound formed by dehydration of X	
2	In its reaction with Na, 1 mol of X gives 1 mol of $H_{2(g)}$. What is X	A. CH ₃ CH ₂ CH ₂ CH ₂ OH B. (CH ₃) ₃ COH C. CH ₃ CH ₂ CH ₂ H D. CH ₃ CH(OH)CO ₂ H
3	Question Image	A. 1-bromobutane B. 2-bromobutane C. 1-bromo-2-methyl propane D. 2-bromo-2-methyl propane
4	An organic compound will decolorise dill acidified (aq) KMnO4on warming, but will not decolorise bromine water. What is the compound	A. KMnO ₄ B. Ethanol C. Ethane D. CH ₃ CH ₂ Cl
5	Which structure shows a tertiary alcohol	A. CH ₃ CH ₂ OH B. (CH ₃) ₂ CHOH C. (CH ₃) ₃ COH D. CH ₂ OH
6	How many secondary alcoholic groups are present in the structure of glucose OHC CHOH CHOHCH OH CHOH CH ₂ OH	A. 1 B. 2 C. 3 D. 4
7	What will react differently with the two isomeric pentols, (CH ₃) ₃ CCH ₂ OH and (CH ₃) ₂ CH CH ₂ CH ₂ OH	A. Acidified (aq) KMnO ₄ B. Concentrated H ₂ SO ₄ C. PCI D. Sodium
8	Which alcohol gives only one oxidation product when wormed with dil acidified $\mbox{K}_2\mbox{Cr}_2\mbox{O}_7$	A. Butan-1-ol B. Butan-2-ol C. 2-methyl propan-1-ol D. 2-methyl propan-2-ol
9	How many alcohol (including both structural isomers and stereoisomers) can have the molecular formula C ₄ H ₁₀ O	A. 3 B. 4 C. 5 D. 6
10	Question Image	A. NH ₃ HCI B. KCN in C ₂ H ₅ OH NaOH C. KCN in C ₂ H ₅ OH HCI D. HCN NaOH
11	Question Image	A. Electrophilic substitution B. Free radical reduction C. Isomerisation D. Nucleophilic substitution
12	Which reaction is example of nucleophilic substitution	
13	What is the total number of different chloroethanes, formula $C_2H_{6-n}Cl_n$, where n can be any integer from 1 to 4	A. 4 B. 6 C. 7 D. 8
14	Question Image	A. Condensation B. Electrophilic substitution C. Free radical substitution D. Nucleophilic substitution
15	Each of the following compounds is effective as a refrigerant. The release of which one of these causes the greatest depletion of the ozone layer	A. CCl ₂ F ₂ B. CH ₃ OCH ₃ C. CH ₃ CHF ₂ D. CH ₃ CH ₂ CH ₃ CH ₄
	CFCs undergo homolytic fission by uv light in the	A. CHE CI C FCI

16	stratosphere which radical could result from this irradiations of CHCICF ₂ Cl.	B. CH CI CF ₂ CI C. CHF CF ₂ CI D. C FCI CF ₂ CI
17	What is the total number of different chloroethanes of formula C ₂ H _{6-n} Cl _n possible (n may be 1 to 6)	A. 6 B. 8 C. 9 D. 10
18	Question Image	A. Electrophilic addition B. Electrophilic substitution C. Free radical substitution D. Nuclophilic addition
19	Which one of the following is not a nucleophile	A. H ₂ 0 B. H ₂ \$ C. BF ₃ D. NH ₃
20	Alkyl halides ae considered to be very reactive compounds towards nucleophiles because	A. They have an electrophilic carbon B. They have an electrophilic carbon and a good leaving group C. They have an electrophilic carbon and a bad leaving group D. They have a nucleophilic carbon and a good leaving group
21	When CO ₂ is made to react with ethyl magnesium iodide, followed by acid hydrolysis, the product formed is	A. Propane B. Propanoic acid C. Propanal D. Propanol
22	Grignard's reagent is	A. Alkyl halide B. Magnesium halide C. Alkyl magnesium halide D. Ethereal solution of an alkyl halide
23	When formaldehyde is added to Grignard reagent we get	A. Aldehyde B. Acetone C. Primary alcohol D. Secondary alcohol
24	The compounds or species in search of electrons are called	A. Elctrophiles B. Nucleophile C. Nitrities D. Bases
25	Thre rate of S _N 2 reaction depends upon the	A. Concentration of alkyl halides B. Concentration of nucleophile C. Concentration of alkyl halides and nucleophile D. None of the above
26	When alkyl halide is heated with aqueous solution of ammonia at 100°C the major product is	A. Primary amine B. Secondary amine C. Tertiary amine D. Mixture of amines and salt
27	Which of the following alkyl halides is used as a mathylating agent	A. CH ₂ H ₅ I B. CH ₃ I C. C ₂ H ₅ Pr D. C ₂ H ₅ CI
28	During nitration of benzene, the active nitrating agent is	A. NO3 B. NO2+ C. NO2- D. HNO3
29	Amongst the following the compound that can be most readily sulphonated is	A. Toluene B. Benzene C. Nitrobenzene D. Chlorobenzene
30	Benzene does not undergo	A. Substitution reaction B. Addition reaction C. Oxidation reaction