

## ECAT Chemistry Chapter 3 Gases Online Test

| Sr | Questions                                                                                                         | Answers Choice                                                                                                                                                                                                                                                                                                                                                                                        |
|----|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | A graph b/w P and 1/V at constant temperature and number of moles is parallel to :                                | A. None of above B. X-axis C. Z-axis D. Y-axis                                                                                                                                                                                                                                                                                                                                                        |
| 2  | A graph b/w P and 1/V at constant temperature and number of moles is parallel to :                                | A. Y-axis B. Z-axis C. X-axis D. None of above                                                                                                                                                                                                                                                                                                                                                        |
| 3  | Boyle's law doesn't fail even :                                                                                   | A. Temperature is extremely high B. Pressure is extremely high C. Mixture of gas is taken D. All of above                                                                                                                                                                                                                                                                                             |
| 4  | According to Boyle's law, which parameters give a straight line parallel to axis-s, when we plot a graph between: | A. V and T B. P and V C. P and 1/V D. P and PV                                                                                                                                                                                                                                                                                                                                                        |
| 5  | Boyle's law is represented as :                                                                                   | A. P <b><span style="font-size:18.0pt;mso-bidi-font-size:11.0pt;line-height:107%">&gt;&gt;</span></b> 1/T <o:p></o:p> B. V and 1/P C. P <b><span style="font-size: 18pt; line-height: 25.68px;">&gt;&gt;</span></b> P D. P <b>&gt;<span style="font-size: 18pt; line-height: 25.68px;">&gt;&gt;</span></b> P D. P <b>&gt;<span style="font-size: 18pt; line-height: 25.68px;">&gt;&gt;</span></b> 1/P |
| 6  | For a gas obeying Boyle's law if pressure is doubled, the volume becomes :                                        | A. Remain constant B. Double C. One half D. None of above                                                                                                                                                                                                                                                                                                                                             |
| 7  | In Boyle's law which of the following pair is variable :                                                          | A. Temperature and quantity of a gas.     B. Pressure and volume     C. Volume and quantity of a gas.     D. Pressure and quantity of a gas.                                                                                                                                                                                                                                                          |
| 8  | In Boyle's law which of the following pair remains constant :                                                     | A. Temperature and quality of a gas.     B. Pressure and quality of a gas.     C. Temperature and pressure     D. Temperature and quantity of a gas.                                                                                                                                                                                                                                                  |
| 9  | The relation ships b/w volume of given amount of gas and prevailing conditions of temperature and pressure are :  | A. Charles's law B. Graham's law C. Boyle's law D. Gas law                                                                                                                                                                                                                                                                                                                                            |
| 10 | The intramolecular force in gases are :                                                                           | A. Weak B. Normal C. Very weak D. Strong                                                                                                                                                                                                                                                                                                                                                              |
| 11 | Liquids are less common than :                                                                                    | A. Solids B. Plasmas C. Gases D. All of above                                                                                                                                                                                                                                                                                                                                                         |
| 12 | Gases shows uniform behavior toward their :                                                                       | A. Internal conditions     B. External conditions     C. Internal and external conditions     D. None of above                                                                                                                                                                                                                                                                                        |
| 13 | Cooling happens under the Joule Thomson Effect due to sudden :                                                    | A. Contraction B. Absortption C. Expansion D. All of above                                                                                                                                                                                                                                                                                                                                            |
|    |                                                                                                                   | A. Rotational kinetic energies B.                                                                                                                                                                                                                                                                                                                                                                     |

| 14 | In solids, the temperature of is the measure of                                | initial; background-attachment: initial; background-origin: initial; background-origin: initial; background-clip: initial;">transnational kineticenergies C. <span style="font-family: Arial, sans-serif; font-size: 10.5pt; line-height: 14.98px; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-origin: initial; background-clip: initial;"><span style="font-family: Arial, sans-serif; font-size: 10.5pt; line-height: 14.98px; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-size: initial; background-repeat: initial; background-size: initial; background-clip: initial;">Vibrational</span>kinetic</span> energies D. None of the above |
|----|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 | In gases and liquids, temperature is the measure of :                          | A. Average transnational kinetic energies of molecules.     B. Average vibrational kinetic energies of molecules.     C. Average rotational kinetic energies of molecules.     D. None of above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16 | The rate of diffusion of a gas is :                                            | A. Inversely proportional to its density     B. Inversely proportional to square root of its molecular mass     C. Directly proportional to molecular mass     D. Directly proportional to its density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 17 | Gases of air always remain in random motion and do not settle due to :         | A. Difference in molecular masses of air gases.     B. Difference in partial pressure of gas molecules.     C. Unequal number of different gas molecules.     D. Elastic collision of gas molecules.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 18 | Gases exert pressure on walls of container because the gas molecules :         | A. Obey gas laws.     B. Have definite volume.     C. Collide with the walls of container.     D. Collide with each other.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 19 | All gases can be compressed by :                                               | A. Keeping constant pressure     B. Decreasing pressure     C. Increasing pressure     D. None of the above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20 | The movement of molecules from a region of high pressure to vacuum is called : | A. Evaporation B. Effusion C. Conduction D. Difusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 21 | Which statement about gases is not correct ?                                   | A. The spread throughout the vessel.     B. Pressure is due to collision     C. There are large spaces between the molecules.     D. molecules are arranged regularly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22 | Which of the following is the simplest form of matter?                         | A. Gaseous state B. Liquid state C. Solid state D. All of above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23 | A real gas obeying van der Waals' equation will resemble ideal gas if :        | A. both 'a' and 'b' are large B. both 'a' and 'b' are small C. 'a' is small and 'b' is large D. 'a' is large and 'b' is small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 24 | The deviation of a gas from ideal behavior is maximum at :                     | A10 <span style='font-size:11.0pt;line-height:107%; font-family:"Calibri",sans-serif;mso-asciitheme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:minor-latin;mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman";mso-bidi-theme-font:minor-bidi; mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA'>°C and 5.0 atm</span> B10 <span style="font-family: Calibri, sans-serif; font-size: 11pt; line-height: 15.6933px;">°C and 2.0 atm</span> C. 100 <span style="font-family: Calibri, sans-serif; font-size: 11pt; line-height: 15.6933px;">°C and 2.0 atm</span> D. 0 <span style="font-family: Calibri, sans-serif; font-size: 11pt; line-height: 15.6933px;">°C and 2.0 atm</span>                                         |

| 25 | The deviation of a gas from ideal behavior is maximum at :                                                                     | height:107%; font-family:"Calibri",sans-serif;mso-asciitheme-font:minor-latin;mso-fareast-font-family:Calibri;mso-fareast-theme-font:minor-latin;mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman";mso-bidi-theme-font:minor-bidi; mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA">°C and 5.0 atm B10 <span style="font-family: Calibri, sans-serif; font-size: 11pt; line-height: 15.6933px,">°C and 2.0 atm</span> C. 100 <span style="font-family: Calibri, sans-serif; font-size: 11pt; line-height: 15.6933px,">°C and 2.0 atm</span> D. 0 <span style="font-family: Calibri, sans-serif; font-size: 11pt; line-height: 15.6933px,">°C and 2.0 atm</span>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26 | Gases deviate from ideal behavior at high pressure. Which of the following is correct for non-ideality?                        | <ul> <li>A. At high pressure, the gas molecules move in one direction only.</li> <li>B. At high pressure, the collisions between the gas molecules are increased manifold.</li> <li>C. At high pressure, the volume of gas becomes insignificant.</li> <li>D. At high pressure, the inter molecular attraction become significant.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 27 | Equal masses of methane and oxygen are mixed in an empty container at 25°CThe fraction of total pressure exerted by oxygen is: | A. 1/2<br>B. 8/9<br>C. 1/9<br>D. 16/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 28 | The order of the rate of diffusion of gases NH3,SO2, $CL_2$ , and $CO_2$ IS:                                                   | A. NH <sub>3 &gt;</sub> SO <sub>2 &gt; </sub> CL <sub>2 &gt;</sub> CO <sub>2</sub> B. NH <sub>3 &gt;</sub> CO <sub>2 &gt;</sub> <sub></sub> SO <sub>2 &gt;</sub> C. CL <sub>2 &gt;</sub> C. CL <sub>2 &gt;</sub> SO <sub>2 &gt;</sub> C. DH <sub>2 &gt;</sub> C. CL <sub>2 &gt;</sub> CSUB>CO <sub>2 &gt;</sub> CO <sub>2</sub> CSUB>CO <sub>2</sub> CSUB>CO <sub>2</sub> CSUB>CO <sub>2</sub> CSUB>CO <sub>2</sub> CSUB>CO <sub>2</sub> CSUB>CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 29 | The molar value of ${\rm CO_2}$ is maximum at :                                                                                | A. STP B. 127 <span style="font-size: 10.5pt; line-height: 107%; font-family: Arial, sans-serif; background-image: initial; background-position: initial; background-size: initial; background-repeat: initial; background-origin: initial; background-clip: initial;"><span style='font-size:11.0pt;line-height:107%; font-family:"Calibri",sans-serif;mso-asciitheme-font:minor-latin;mso-fareast-font-family: Calibri;mso-fareast-theme-font:minor-latin;mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman";mso-bidi-theme-font:minor-bidi; mso-ansi-language:EN-US;mso-fareast-language:EN-US;mso-bidi-language:AR-SA'>°</span>C and 1 atm</span> C. <span style="line-height: 14.98px; background-image: initial; background-imag&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;repeat: initial; background-attachment: initial; background-origin: initial; background-clip: initial;"><span style="line-height: 15.6933px;">0</span><span style="font-family: Calibri, sans-serif; font-size: 11pt; line-height: 15.6933px;">°</span><font face="Arial, sans-serif"><span style="font-size: 10.5pt;">C and 2 atm</span></font></span> D. <span style="line-height: 15.6933px;">273</span> <span style="font-family: Calibri, sans-serif; font-size: 11pt; line-height: 15.6933px;">°</span> <span style="font-size: 11pt; line-height: 15.6933px;">°</span> <span style="font-size: 10.5pt;">C and 2 atm</span> |
|    |                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |