

Chemistry 10th Class English Medium Online Test

Sy Questions Answers Choice 1 In the bessemerization process. A Rosaled or is beated. B. Molten mettic is removed. C. Molten mettic is removed. C. Molten mettic is removed. C. Molten mettic is added 2 Mattle is a mixture of: C. Cursub 2-2 stub-2 and FeS C. Cursub-2 2-2 stub-2 and FeS C. D. Magnetic basis 4 Concentration is a . A Density basis B. Concentration basis C. Mething the basis B. Concentration basis C. Mething the basis C. Cursub-2 2-2 stub-2 C. Cursub-2 2-2			
1 In the bessemerization process. B. Molten matte is heated C. Molten matte is added 3 Froth flotation process is used to concentrate the ore on: A Density basis B. Concentration basis C. Wetting basis D. Magnetic basis D. Ma	Sr	Questions	Answers Choice
2 Matte is a mixture of: 2 C. Cussub2-2/slub-S and FeO D. CuS and FeO D. Wetting basis D. Magnetic	1	In the bessemerization process.	B. Molten matte is removed.C. Molten matte is heated
Froth flotation process is used to concentrate the ore on: B. Concentration basis C. Wetting basis D. Magnetic basis Concentration is a . Concentration is a . Concentration is a . A. Mixing technique C. Boiling technique C. Boiling technique D. cooling technique D. cooling technique C. Boiling technique D. cooling tec	2	Matte is a mixture of:	B. Cu ₂ O and FeO C. Cu ₂ S and FeS
4 Concentration is a . B. Separating technique C. Boiling technique D. cooling technique D. cooling technique D. cooling technique The residual oil is heated above 400 c to produce. A. Lubricants B. Parafin wax C. Asphalt D. All A. NaCl B. CaCO\sub>3-/sub> C. Asphalt D. All A. NaCl B. CaCO\sub>3-/sub> C. CaC(\sub>2-2/sub> D. Na\sub>2-2/sub> D. Na\sub>2-2/sub>2-2/sub> D. Na\sub>2-2/sub> D. Na\sub>2-2/sub>2-2/sub> D. Na\sub>2-2/sub>2-2/sub> D. Na\sub>2-2/sub>2-2	3	Froth flotation process is used to concentrate the ore on:	B. Concentration basis C. Wetting basis
5 The residual oil is heated above 400 c to produce. B. Paraffin wax C. Asphalt D. All A NaCl B. CaCO-sub>3-/sub> C. CaCI-sub>2-/sub> D. Na sub>2-/sub> D. Na sub>2-/sub> D. Na sub>2-/sub> O.	4	Concentration is a .	B. Separating techniqueC. Boiling technique
6 Ammonical brine is prepared by dissolving ammonia gas in. 8 CacO <sub>3<sub> CacC\sub>2<sub> CacC\sub>2<sub> CacC\sub>2<sub> CacC\sub>2<sub> CacC\sub>2<sub> Nassub>2<sub> Nassub>2<sub> Nassub>2<sub> Nassub>2<sub> Nasub>2<sub> Nasub>2<sub< td=""><td>5</td><td>The residual oil is heated above 400 c to produce.</td><td>B. Paraffin wax C. Asphalt</td></sub<></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	5	The residual oil is heated above 400 c to produce.	B. Paraffin wax C. Asphalt
7 Sodium carbonate is manufactured by. 8 Concentration is a separating technique in which mineral is separated from. 9 The number of carbon atoms present in fuel oil. 10 The number of carbon atoms present in diesel oil. 11 The number of carbon atoms present in kerosene oil. 12 The number of carbon atoms present in gasoline or petrol. 8 D. As-10 B. 6-10 C. 7-10	6	Ammonical brine is prepared by dissolving ammonia gas in.	B. CaCO ₃ C. CaCl ₂
8 Concentration is a separating technique in which mineral is separated from. 9 The number of carbon atoms present in fuel oil. 10 The number of carbon atoms present in diesel oil. 11 The number of carbon atoms present in kerosene oil. 12 The number of carbon atoms present in gasoline or petrol. 8 Silicates C. Aluminates D. All A. 14-18 B. 15-18 C. 16-18 D. 17-18 A. 10-15 B. 11-15 C. 12-15 D. 13-15 A. 8-12 B. 9-12 C. 10-12 D. 11-12 A. 5-10 B. 6-10 C. 7-10	7	Sodium carbonate is manufactured by.	B. Ostwald's processC. Solvay's process
The number of carbon atoms present in fuel oil. C. 16-18 D. 17-18 A. 10-15 B. 11-15 C. 12-15 D. 13-15 The number of carbon atoms present in diesel oil. A. 8-12 B. 9-12 C. 10-12 D. 11-12 A. 5-10 B. 6-10 C. 7-10	8	Concentration is a separating technique in which mineral is separated from.	B. Silicates C. Aluminates
The number of carbon atoms present in diesel oil. B. 11-15 C. 12-15 D. 13-15 A. 8-12 B. 9-12 C. 10-12 D. 11-12 The number of carbon atoms present in kerosene oil. A. 5-10 B. 6-10 C. 7-10	9	The number of carbon atoms present in fuel oil.	B. 15-18 C. 16-18
The number of carbon atoms present in kerosene oil. B. 9-12 C. 10-12 D. 11-12 A. 5-10 B. 6-10 C. 7-10	10	The number of carbon atoms present in diesel oil.	B. 11-15 C. 12-15
The number of carbon atoms present in gasoline or petrol. B. 6-10 C. 7-10	11	The number of carbon atoms present in kerosene oil.	B. 9-12 C. 10-12